Thrombomodulin Protects Endothelial Cells From a Calcineurin Inhibitor–Induced Cytotoxicity by Upregulation of Extracellular Signal–Regulated Kinase/Myeloid Leukemia Cell-1 Signaling

Author:

Ikezoe Takayuki1,Yang Jing1,Nishioka Chie1,Honda Goichi1,Furihata Mutsuo1,Yokoyama Akihito1

Affiliation:

1. From the Department of Hematology and Respiratory Medicine (T.I., J.Y., C.N., A.Y.) and Department of Pathology (M.F.), Kochi University, Nankoku, Kochi, Japan; Research Fellow of the Japanese Society for the Promotion of Science (JSPS), Chiyodaku, Tokyo, Japan (C.N.); and ART Project, Asahi Kasei Pharma, Kanda Jinbocho, Chiyoda-ku, Tokyo, Japan (G.H.).

Abstract

Objective— We have recently reported that recombinant human soluble thrombomodulin (rTM) counteracted capillary leakage associated with engraftment, as well as sinusoidal obstructive syndrome after hematopoietic stem cell transplantation. These observations prompted us to explore whether rTM possessed cytoprotective effects on endothelial cells. Methods and Results— Exposure of human umbilical vein endothelial cells to rTM induced expression of antiapoptotic protein myeloid leukemia cell-1 through the activation of extracellular signal–regulated kinase in these cells. Additional studies found that exposure of human umbilical vein endothelial cells to cyclosporine A and FK506, an immunosuppressant used for the individuals receiving hematopoietic stem cell transplantation, induced apoptosis, which was attenuated when human umbilical vein endothelial cells were exposed to these agents in the presence of rTM. Further studies using deletion mutants of thrombomodulin (TM) identified that the epidermal growth factor domain of TM possessed cytoprotective effects. A single nucleotide substitution at codon 376 or 424 of TM, which impairs the ability of TM to produce activated protein C or bind to thrombin, respectively, did not hamper the cytoprotective effects of TM, which suggested that cytoprotective effects of rTM were distinctive from those of activated protein C. Conclusion— TM may be useful for prevention, as well as treatment of endothelial cell damage after hematopoietic stem cell transplantation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3