Propranolol and lidocaine inhibit neural norepinephrine release in hearts with increased extracellular potassium and ischemia.

Author:

Du X J1,Riemersma R A1,Fox K A1,Dart A M1

Affiliation:

1. Baker Medical Research Institute, Melbourne, Australia.

Abstract

BACKGROUND Propranolol and lidocaine are effective antiarrhythmic drugs in myocardial ischemia and infarction. As sympathetic nerve activation and norepinephrine release in ischemic hearts are arrhythmogenic, we tested the possibility that both agents inhibit neural norepinephrine release following sympathetic activation in the ischemic environment. METHODS AND RESULTS The model used was an in situ perfused innervated rat heart. Norepinephrine release was induced by electrical stimulation of the left cervicothoracic stellate ganglion and analyzed using radioenzymatic assay or high-performance liquid chromatography. In normoxically perfused hearts, evoked norepinephrine release was not affected by either of the two agents at doses of 1 to 10 mumol/L when extracellular K+ concentration was 4 mmol/L but dose-dependently reduced at 10 mmol/L K+ (D,L-propranolol: -53 +/- 4% at 1 mumol/L and -64 +/- 6% at 10 mumol/L K+, lidocaine: -37 +/- 11% at 0.1 mumol/L, -67 +/- 5% at 1 mumol/L, and -75 +/- 6% at 10 mumol/L). At 10 mmol/L K+, norepinephrine release was not affected by timolol or atenolol (both 10 mumol/L but was equally inhibited by D- or L-propranolol at 10 mumol/L (-56 +/- 5% and -53 +/- 9%, respectively), indicating a beta-blocking-independent mechanism. In hearts with metabolic acidosis (pH 6.85) at K+ of 4 mmol/L, neural norepinephrine release was also reduced by propranolol at 10 mumol/L (-37%). Finally, in hearts perfused with 4 mmol/L K+ and subjected to 6-minute periods of ischemia, neural norepinephrine release was similarly suppressed by D,L-propranolol (-38 +/- 6% at 0.1 mumol/L, -44 +/- 5% at 1 mumol/L, and -78 +/- 3% at 10 mumol/L) or lidocaine (-39 +/- 7% at 0.1 mumol/L, -58 +/- 9% at 1 mumol/L, and -91 +/- 3% at 10 mumol/L). CONCLUSIONS These data indicate that propranolol and lidocaine inhibit neural norepinephrine release via a Na+ channel-blocking mechanism that is synergistic with changes induced by ischemia, primarily raised extracellular K+. This mechanism may contribute to the anti-ischemic and antiarrhythmic properties of both agents in acute myocardial ischemia, which induces increased extracellular K+ and sympathetic activation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference41 articles.

1. Beta blockade during and after myocardial infarction: An overview of the randomized trials

2. PREVENTION OF VENTRICULAR FIBRILLATION DURING ACUTE MYOCARDIAL INFARCTION BY INTRAVENOUS PROPRANOLOL

3. Myocardial infarction: effects of /3-blockade;Hjalmarson A;Circulation.,1991

4. Corr PB Yamada KA Witkowski FX. Mechanisms controlling cardiac autonomic function and their relation to arrhythmogenesis. In: Fozzard HA Haber E Jennings RB Katz AM eds. The Heart and Cardiovascular System: Scientific Foundations. New York NY: Raven Press Publishers; 1986:1343-1404.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3