Preoperative prediction of the outcome of coronary revascularization using positron emission tomography.

Author:

de Silva R1,Yamamoto Y1,Rhodes C G1,Iida H1,Nihoyannopoulos P1,Davies G J1,Lammertsma A A1,Jones T1,Maseri A1

Affiliation:

1. Medical Research Council Cyclotron, Hammersmith Hospital, London, U.K.

Abstract

BACKGROUND Previous assessments of myocardial viability using positron emission tomography (PET) relied on demonstration of glucose metabolism in hypoperfused asynergic segments using the glucose analogue [18F]2-fluoro-2-deoxyglucose (FDG). Recently, it was shown that myocardial viability could be assessed by calculating the water-perfusable tissue index (PTI) for the asynergic region. PTI represents the proportion of the myocardium that is capable of rapid transsarcolemmal exchange of water and thus perfusable by water. The aim of the present study was to assess myocardial viability by PET using PTI in patients undergoing coronary revascularization. METHODS AND RESULTS Twelve patients with chronic coronary artery disease and previous myocardial infarction were studied. Analysis of transmission (tissue density) and 15O-labeled carbon monoxide (blood pool), and 15O-labeled water (myocardial blood flow [MBF]) emission PET data enabled the simultaneous quantification of MBF (ml.min-1.g perfusable tissue-1) and PTI (gram of perfusable tissue per gram of total anatomic tissue). In addition, PET imaging with FDG after 75-g oral glucose load was performed in eight patients. Preoperative echocardiography identified 33 hypocontractile and 26 control segments. Follow-up echocardiography performed 3 to 5 months later demonstrated 26 of 33 segments with improved wall motion (recovery) and seven of 33 segments without improvement (nonrecovery). MBF in the control segments (0.97 +/- 0.22 ml.min-1.g perfusable tissue-1) was significantly higher (p < 0.001) than in both the recovery (0.73 +/- 0.18 ml.min-1.g perfusable tissue-1) and the nonrecovery (0.45 +/- 0.11 ml.min-1.g perfusable tissue-1) segments. PTI in the recovery regions (0.99 +/- 0.15) was > or = 0.7 in all cases and slightly less than in control regions (1.10 +/- 0.15, p < 0.02). FDG uptake in these regions was 92 +/- 17% (n = 13) of the uptake in control segments with normal wall motion. In the nonrecovery group, PTI was 0.62 +/- 0.06 (p < 0.02 versus control and recovery) and always < 0.7. In the one patient in whom a comparison with metabolic imaging was made, FDG uptake was 46% of the uptake in a reference region with normal wall motion. CONCLUSIONS These data showed that contractile recovery occurred only in segments where PTI was > or = 0.7, suggesting that > or = 70% of myocardial tissue in a given asynergic segment should be perfusable by water to enable contractile recovery. There was good agreement between the PTI and FDG methods for predicting improvements in regional wall motion after revascularization. Although further studies should be performed in a larger patient group, the preliminary results are promising and suggest that PTI may be a good predictor of contractile recovery after coronary revascularization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3