Sleep Deprivation Promotes Endothelial Inflammation and Atherogenesis by Reducing Exosomal miR-182-5p

Author:

Li Xiao1,Cao Ying1,Xu Xinxin1,Wang Chongyue1,Ni Qingbin2,Lv Xiang1,Yang Chao1,Zhang Zhaoqiang1,Qi Xufeng3ORCID,Song Guohua1ORCID

Affiliation:

1. School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)

2. Hydrogen medicine center, Tai ‘an City Central Hospital, China (Q.N.).

3. Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China (X.Q.).

Abstract

Background: Insufficient or disrupted sleep increases the risk of cardiovascular disease, including atherosclerosis. However, we know little about the molecular mechanisms by which sleep modulates atherogenesis. This study aimed to explore the potential role of circulating exosomes in endothelial inflammation and atherogenesis under sleep deprivation status and the molecular mechanisms involved. Methods: Circulating exosomes were isolated from the plasma of volunteers with or without sleep deprivation and mice subjected to 12-week sleep deprivation or control littermates. miRNA array was performed to determine changes in miRNA expression in circulating exosomes. Results: Although the total circulating exosome levels did not change significantly, the isolated plasma exosomes from sleep-deprived mice or human were a potent inducer of endothelial inflammation and atherogenesis. Through profiling and functional analysis of the global microRNA in the exosomes, we found miR-182-5p is a key exosomal cargo that mediates the proinflammatory effects of exosomes by upregulation of MYD88 (myeloid differentiation factor 88) and activation of NF-ĸB (nuclear factor kappa-B)/NLRP3 pathway in endothelial cells. Moreover, sleep deprivation or the reduction of melatonin directly decreased the synthesis of miR-182-5p and led to the accumulation of reactive oxygen species in small intestinal epithelium. Conclusions: The findings illustrate an important role for circulating exosomes in distant communications, suggesting a new mechanism underlying the link between sleep disorder and cardiovascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3