Capillary Endothelial Fatty Acid Binding Proteins 4 and 5 Play a Critical Role in Fatty Acid Uptake in Heart and Skeletal Muscle

Author:

Iso Tatsuya1,Maeda Kazuhisa1,Hanaoka Hirofumi1,Suga Toshihiro1,Goto Kosaku1,Syamsunarno Mas Rizky A.A1,Hishiki Takako1,Nagahata Yoshiko1,Matsui Hiroki1,Arai Masashi1,Yamaguchi Aiko1,Abumrad Nada A.1,Sano Motoaki1,Suematsu Makoto1,Endo Keigo1,Hotamisligil Gökhan S.1,Kurabayashi Masahiko1

Affiliation:

1. From the Department of Medicine and Biological Science (T.I., T.S., K.G., M.R.A.AS., H.M., M.A., M.K.), Education and Research Support Center (T.I., M.K.), Department of Bioimaging Information Analysis (H.H., A.Y.), and Department of Diagnostic Radiology and Nuclear Medicine (K.E.), Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Genetics and Complex Diseases and Nutrition, Broad Institute of Harvard and MIT, Harvard School of Public Health, Boston, MA (K.M., G.S...

Abstract

Objective— Fatty acids (FAs) are the major substrate for energy production in the heart. Here, we hypothesize that capillary endothelial fatty acid binding protein 4 (FABP4) and FABP5 play an important role in providing sufficient FAs to the myocardium. Approach and Results— Both FABP4/5 were abundantly expressed in capillary endothelium in the heart and skeletal muscle. The uptake of a FA analogue, 125I-15-( p -iodophenyl)-3-(R,S)-methyl pentadecanoic acid, was significantly reduced in these tissues in double-knockout (DKO) mice for FABP4/5 compared with wild-type mice. In contrast, the uptake of a glucose analogue, 18F-fluorodeoxyglucose, was remarkably increased in DKO mice. The expression of transcripts for the oxidative catabolism of FAs was reduced during fasting, whereas transcripts for the glycolytic pathway were not altered in DKO hearts. Notably, metabolome analysis revealed that phosphocreatine and ADP levels were significantly lower in DKO hearts, whereas ATP content was kept at a normal level. The protein expression levels of the glucose transporter Glut4 and the phosphorylated form of phosphofructokinase-2 were increased in DKO hearts, whereas the phosphorylation of insulin receptor-β and Akt was comparable between wild-type and DKO hearts during fasting, suggesting that a dramatic increase in glucose usage during fasting is insulin independent and is at least partly attributed to the post-transcriptional and allosteric regulation of key proteins that regulate glucose uptake and glycolysis. Conclusions— Capillary endothelial FABP4/5 are required for FA transport into FA-consuming tissues that include the heart. These findings identify FABP4/5 as promising targets for controlling the metabolism of energy substrates in FA-consuming organs that have muscle-type continuous capillary.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3