Machine Learning Uncovers Vascular Endothelial Cell Identity Genes by Expression Regulation Features in Single Cells

Author:

Arulsamy Kulandaisamy,Xia Bo,Chen Hong,Zhang Lili,Chen Kaifu

Abstract

AbstractDeciphering cell identity genes is pivotal to understanding cell differentiation, development, and many diseases involving cell identity dysregulation. Here, we introduce SCIG, a machine-learning method to uncover cell identity genes in single cells. In alignment with recent reports that cell identity genes are regulated with unique epigenetic signatures, we found cell identity genes exhibit distinctive genetic sequence signatures, e.g., unique enrichment patterns of cis-regulatory elements. Using these genetic sequence signatures, along with gene expression information from single-cell RNA-seq data, enables SCIG to uncover the identity genes of a cell without a need for comparison to other cells. Cell identity gene score defined by SCIG surpassed expression value in network analysis to uncover master transcription factors regulating cell identity. Applying SCIG to the human endothelial cell atlas revealed that the tissue microenvironment is a critical supplement to master transcription factors for cell identity refinement. SCIG is publicly available athttps://github.com/kaifuchenlab/SCIG, offering a valuable tool for advancing cell differentiation, development, and regenerative medicine research.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3