Endothelial BMPR2 Loss Drives a Proliferative Response to BMP (Bone Morphogenetic Protein) 9 via Prolonged Canonical Signaling

Author:

Theilmann Anne L.1,Hawke Lindsey G.1,Hilton L. Rhiannon1,Whitford Mara K.M.1,Cole Devon V.1,Mackeil Jodi L.1,Dunham-Snary Kimberly J.2,Mewburn Jeffrey2,James Paula D.2,Maurice Donald H.1,Archer Stephen L.2ORCID,Ormiston Mark L.3

Affiliation:

1. Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen’s University, Kingston, Canada.

2. Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen’s University, Kingston, Canada.

3. Department of Surgery (M.L.O.), Queen’s University, Kingston, Canada.

Abstract

Objective: Pulmonary arterial hypertension is a disease of proliferative vascular occlusion that is strongly linked to mutations in BMPR2 —the gene encoding the BMPR-II (BMP [bone morphogenetic protein] type II receptor). The endothelial-selective BMPR-II ligand, BMP9, reverses disease in animal models of pulmonary arterial hypertension and suppresses the proliferation of healthy endothelial cells. However, the impact of BMPR2 loss on the antiproliferative actions of BMP9 has yet to be assessed. Approach and Results: BMP9 suppressed proliferation in blood outgrowth endothelial cells from healthy control subjects but increased proliferation in blood outgrowth endothelial cells from pulmonary arterial hypertension patients with BMPR2 mutations. This shift from growth suppression to enhanced proliferation was recapitulated in control human pulmonary artery endothelial cells following siRNA-mediated BMPR2 silencing, as well as in mouse pulmonary endothelial cells isolated from endothelial-conditional Bmpr2 knockout mice ( Bmpr2 EC −/− ). BMP9-induced proliferation was not attributable to altered metabolic activity or elevated TGFβ (transforming growth factor beta) signaling but was linked to the prolonged induction of the canonical BMP target ID1 in the context of BMPR2 loss. In vivo, daily BMP9 administration to neonatal mice impaired both retinal and lung vascular patterning in control mice ( Bmpr2 EC+/+ ) but had no measurable effect on mice bearing a heterozygous endothelial Bmpr2 deletion ( Bmpr2 EC +/− ) and caused excessive angiogenesis in both vascular beds for Bmpr2 EC −/− mice. Conclusions: BMPR2 loss reverses the endothelial response to BMP9, causing enhanced proliferation. This finding has potential implications for the proposed translation of BMP9 as a treatment for pulmonary arterial hypertension and suggests the need for focused patient selection in clinical trials.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3