Cell-Free DNA Modulates Clot Structure and Impairs Fibrinolysis in Sepsis

Author:

Gould Travis J.1,Vu Trang T.1,Stafford Alan R.1,Dwivedi Dhruva J.1,Kim Paul Y.1,Fox-Robichaud Alison E.1,Weitz Jeffrey I.1,Liaw Patricia C.1

Affiliation:

1. From the Department of Medical Sciences (T.J.G., T.T.V.), Thrombosis and Atherosclerosis Research Institute (T.J.G., T.T.V., A.R.S., D.J.D., P.Y.K., A.E.F.-R., J.I.W., P.C.L.), and Department of Medicine (A.R.S., P.Y.K., A.E.F.-R., J.I.W., P.C.L.), McMaster University, Hamilton, Ontario, Canada.

Abstract

Objectives— Sepsis is characterized by systemic activation of inflammation and coagulation in response to infection. In sepsis, activated neutrophils extrude neutrophil extracellular traps composed of cell-free DNA (CFDNA) that not only trap pathogens but also provide a stimulus for clot formation. Although the effect of CFDNA on coagulation has been extensively studied, much less is known about the impact of CFDNA on fibrinolysis. To address this, we (1) investigated the relationship between CFDNA levels and fibrinolytic activity in sepsis and (2) determined the mechanisms by which CFDNA modulates fibrinolysis. Approach and Results— Plasma was collected from healthy and septic individuals, and CFDNA was quantified. Clot lysis assays were performed in plasma and purified systems, and lysis times were determined by monitoring absorbance. Clot morphology was assessed using scanning electron microscopy. Clots formed in plasma from septic patients containing >5 µg/mL CFDNA were dense in structure and resistant to fibrinolysis, a phenomenon overcome by deoxyribonuclease addition. These effects were recapitulated in control plasma supplemented with CFDNA. In a purified system, CFDNA delayed fibrinolysis but did not alter tissue-type plasminogen activator–induced plasmin generation. Using surface plasmon resonance, CFDNA bound plasmin with a K d value of 4.2±0.3 µmol/L, and increasing concentrations of CFDNA impaired plasmin-mediated degradation of fibrin clots via the formation of a nonproductive ternary complex between plasmin, CFDNA, and fibrin. Conclusions— Our studies suggest that the increased levels of CFDNA in sepsis impair fibrinolysis by inhibiting plasmin-mediated fibrin degradation, thereby identifying CFDNA as a potential therapeutic target for sepsis treatment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3