In response to bacteria, neutrophils release extracellular vesicles capable of initiating thrombin generation through DNA-dependent and independent pathways

Author:

Whitefoot-Keliin Kaitlyn M1,Benaske Chase C1,Allen Edwina R1,Guerrero Mariana T2,Grapentine Justin W2,Schiff Benjamin D2,Mahon Andrew R1,Greenlee-Wacker Mallary C2ORCID

Affiliation:

1. Deparment of Biology, Central Michigan University , 1200 S Franklin St., Mt. Pleasant, MI 48859 , United States

2. Biological Sciences Department, California Polytechnic State University, San Luis Obispo , 1 Grand Avenue, San Luis Obispo, CA 93407 , United States

Abstract

Abstract Neutrophils release extracellular vesicles, and some subsets of neutrophil-derived extracellular vesicles are procoagulant. In response to Staphylococcus aureus, neutrophils produce extracellular vesicles that associate electrostatically with neutrophil extracellular traps. DNA in neutrophil extracellular traps is procoagulant, but whether neutrophil extracellular vesicles produced during bacterial challenge have similar activity is unknown. Given that extracellular vesicle activity is agonist and cell-type dependent and coagulation contributes to sepsis, we hypothesized that sepsis-causing bacteria increase production of neutrophil-derived extracellular vesicles, as well as extracellular vesicle–associated DNA, and intact extracellular vesicles and DNA cause coagulation. We recovered extracellular vesicles from neutrophils challenged with S. aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa and measured associated DNA and procoagulant activity. Extracellular vesicles from S. aureus–challenged neutrophils, which were previously characterized, displayed dose-dependent procoagulant activity as measured by thrombin generation in platelet-poor plasma. Extracellular vesicle lysis and DNase treatment reduced thrombin generation by 90% and 37%, respectively. S. epidermidis, E. coli, and P. aeruginosa also increased extracellular vesicle production and extracellular vesicle–associated extracellular DNA, and these extracellular vesicles were also procoagulant. Compared to spontaneously released extracellular vesicles, which demonstrated some ability to amplify factor XII–dependent coagulation in the presence of an activator, only extracellular vesicles produced in response to bacteria could initiate the pathway. S. aureus and S. epidermidis extracellular vesicles had more surface-associated DNA than E. coli and P. aeruginosa extracellular vesicles, and S. aureus and S. epidermidis extracellular vesicles contributed to initiation and amplification of thrombin generation in a DNA-dependent manner. However, DNA on E. coli or P. aeruginosa extracellular vesicles played no role, suggesting that neutrophils release procoagulant extracellular vesicles, which can activate the coagulation cascade through both DNA-dependent and independent mechanisms.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3