Synaptotagmin-Like Protein 2a Regulates Angiogenic Lumen Formation via Weibel-Palade Body Apical Secretion of Angiopoietin-2

Author:

Francis Caitlin R.1,Claflin Shea1,Kushner Erich J.1ORCID

Affiliation:

1. Department of Biological Sciences, University of Denver, CO.

Abstract

Objective: Vascular lumen formation requires the redistribution of intracellular proteins to instruct apicobasal polarity, thereby enforcing maturation of both luminal and basal domains. In the absence of proper apical signaling, lumen formation can be distorted leading to lumen collapse and cessation of blood flow. Slp2a (synaptotagmin-like protein-2a) has been implicated in apical membrane signaling; however, the role of Slp2a in vascular lumen formation has never been assessed. Approach and Results: Our results demonstrate that Slp2a is required for vascular lumen formation. Using a 3-dimensional sprouting assay, sub-cellular imaging, and zebrafish blood vessel development, we establish that Slp2a resides at the apical membrane acting as a tether for Rab27a that decorates Weibel-Palade bodies (WPBs). We show that Slp2a regulates exocytic activity of WPBs, thus regulating release of WPB contents into the luminal space during angiogenesis. Angiopoietin-2 is a Tie-2 receptor ligand that is selectively released from WPB secretory granules. We identify a critical role for angiopoietin-2 in regulating endothelial lumenization and show that in the absence of Slp2a, WPB contents cannot fuse with the apical membrane. This disrupts the release of angiopoietin-2 and blocks Tie-2 signaling necessary for proper lumen formation. Conclusions: Our results demonstrate a novel requirement of Slp2a for vascular lumen formation. Moreover, we show that Slp2a is required for the exocytic release of WPB secretory granule cargo during vascular lumen development, and thus is a core upstream component of the WPB secretory pathway. Furthermore, we provide evidence that WPB-housed angiopoietin-2 is required for vascular lumen formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3