Arf6 is required for endocytosis and filamentous actin assembly during angiogenesis in vitro

Author:

Francis Caitlin R.1,Bell Makenzie L.1,Skripnichuk Marina M.1,Kushner Erich J.1ORCID

Affiliation:

1. Department of Biological Sciences University of Denver Denver Colorado USA

Abstract

AbstractObjectiveEndocytosis is a process vital to angiogenesis and vascular homeostasis. In pathologies where supraphysiological growth factor signaling underlies disease etiology, such as in diabetic retinopathy and solid tumors, strategies to limit chronic growth factor signaling by way of blunting endocytic processes have been shown to have tremendous clinical value. ADP ribosylation factor 6 (Arf6) is a small GTPase that promotes the assembly of actin necessary for clathrin‐mediated and clathrin‐independent endocytosis. In its absence, growth factor signaling is greatly diminished, which has been shown to ameliorate pathological signaling input in diseased vasculature. However, it is less clear if there are bystander effects related to loss of Arf6 on angiogenic behaviors. Our goal was to provide an analysis of Arf6's function in angiogenic endothelium, focusing on its role in actin and endocytosis as well as sprouting morphogenesis.MethodsPrimary endothelial cells were cultured in both 2D and 3D environments. Here, endothelial cells were fixed and stained for various proteins or transfected with fluorescently‐tagged constructs for live‐cell imaging.ResultsWe found that Arf6 localized to both filamentous actin and sites of endocytosis in two‐dimensional culture. Loss of Arf6 distorted both apicobasal polarity and reduced the total cellular filamentous actin content, which may be the primary driver underlying gross sprouting dysmorphogenesis in its absence.ConclusionsOur findings highlight that endothelial Arf6 is a potent mediator of both actin regulation and endocytosis and is required for proper sprout formation.

Funder

National Heart, Lung, and Blood Institute

Publisher

Wiley

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Molecular Biology,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3