Stearic Acid Accumulation in Macrophages Induces Toll-Like Receptor 4/2-Independent Inflammation Leading to Endoplasmic Reticulum Stress–Mediated Apoptosis

Author:

Anderson Emily K.1,Hill Andrea A.1,Hasty Alyssa H.1

Affiliation:

1. From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN.

Abstract

Objective— Elevated serum free fatty acid levels are associated with an increased risk of cardiovascular disease and type 2 diabetes mellitus. Macrophages are recruited to atherosclerotic plaques and metabolic tissues during obesity and accumulate lipids, including free fatty acids. We investigated the molecular consequences of intracellular saturated free fatty acid accumulation in macrophages. Methods and Results— Previously, we demonstrated that cotreatment of mouse peritoneal macrophages (MPMs) with stearic acid and triacsin C (an inhibitor of long-chain acyl coenzyme A synthetases) results in intracellular free fatty acid accumulation and apoptosis. Here, we used Western blotting analysis, real-time reverse transcription polymerase chain reaction, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining to assess endoplasmic reticulum (ER) stress, inflammation, and apoptosis in MPMs. Intracellular stearic acid accumulation induces Toll-like receptor 4/2-independent inflammation that results in ER stress–mediated apoptosis of MPMs. Polarization of MPMs to a proinflammatory M1 phenotype increases their susceptibility to inflammation and ER stress, but not apoptosis, in response to cotreatment with stearic acid and triacsin C. Conclusion— Intracellular accumulation of stearic acid in MPMs activates inflammatory signaling, leading to ER stress–mediated apoptosis. M1 macrophages are more prone to stearic acid–induced inflammation and ER stress. These same pathways may be activated in macrophages residing in atherosclerotic plaques and metabolic tissues during conditions of obesity and hyperlipidemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3