Plant Stanol Esters Reduce LDL (Low-Density Lipoprotein) Aggregation by Altering LDL Surface Lipids

Author:

Ruuth Maija12,Äikäs Lauri1,Tigistu-Sahle Feven134,Käkelä Reijo35,Lindholm Harri6,Simonen Piia7,Kovanen Petri T.1,Gylling Helena7,Öörni Katariina13ORCID

Affiliation:

1. From the Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland (M.R., L.Ä., F.T.-S., P.T.K., K.Ö.)

2. Research Programs Unit, Faculty of Medicine (M.R.), University of Helsinki, Finland

3. Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences (F.T.-S., R.K., K.Ö.), University of Helsinki, Finland

4. Ethiopian Biotechnology Institute, Addis Ababa (F.T.-S.)

5. Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Sciences (HiLIFE) and Biocenter Finland (R.K.)

6. Finnish Institute of Occupational Health, Helsinki, Finland (H.L.).

7. Helsinki University Central Hospital, Heart and Lung Center, Cardiology (P.S., H.G.), University of Helsinki, Finland

Abstract

Objective: Plant stanol ester supplementation (2–3 g plant stanols/d) reduces plasma LDL (low-density lipoprotein) cholesterol concentration by 9% to 12% and is, therefore, recommended as part of prevention and treatment of atherosclerotic cardiovascular disease. In addition to plasma LDL-cholesterol concentration, also qualitative properties of LDL particles can influence atherogenesis. However, the effect of plant stanol ester consumption on the proatherogenic properties of LDL has not been studied. Approach and Results: Study subjects (n=90) were randomized to consume either a plant stanol ester-enriched spread (3.0 g plant stanols/d) or the same spread without added plant stanol esters for 6 months. Blood samples were taken at baseline and after the intervention. The aggregation susceptibility of LDL particles was analyzed by inducing aggregation of isolated LDL and following aggregate formation. LDL lipidome was determined by mass spectrometry. Binding of serum lipoproteins to proteoglycans was measured using a microtiter well-based assay. LDL aggregation susceptibility was decreased in the plant stanol ester group, and the median aggregate size after incubation for 2 hours decreased from 1490 to 620 nm, P =0.001. Plant stanol ester-induced decrease in LDL aggregation was more extensive in participants having body mass index<25 kg/m 2 . Decreased LDL aggregation susceptibility was associated with decreased proportion of LDL-sphingomyelins and increased proportion of LDL-triacylglycerols. LDL binding to proteoglycans was decreased in the plant stanol ester group, the decrease depending on decreased serum LDL-cholesterol concentration. Conclusions: Consumption of plant stanol esters decreases the aggregation susceptibility of LDL particles by modifying LDL lipidome. The resulting improvement of LDL quality may be beneficial for cardiovascular health. Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT01315964.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3