Structural Changes in AMPA-Receptive Neurons in the Nucleus of the Solitary Tract of Spontaneously Hypertensive Rats

Author:

Aicher Sue A.1,Sharma Sarita1,Mitchell Jennifer L.1

Affiliation:

1. From the Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Ore.

Abstract

The baroreceptor reflex is critical for homeostatic regulation of blood pressure and is initiated centrally by glutamate release from baroreceptive afferents onto neurons in the nucleus of the solitary tract that activates AMPA-type glutamate receptors. The GluR1 subunit of the AMPA receptor is located at postsynaptic sites within the nucleus of the solitary tract, particularly in dendritic spines, which are important sites for synaptic plasticity. We tested whether the distribution of GluR1 changes after sustained hypertension, which alters baroreceptor afferent activity. We examined the distribution of GluR1 in the nucleus of the solitary tract of both hypertensive (spontaneously hypertensive) and normotensive (Wistar-Kyoto) rats at the light microscopic and electron microscopic levels. There were more GluR1-containing dendritic spines in the nucleus of the solitary tract of hypertensive rats compared with normotensive rats, which was attributable to an increase in the proportion of dendritic spines containing GluR1 as well as an increase in the total number of dendritic spines. The differences were only seen after the development of hypertension and were not seen in rostral regions of the nucleus of the solitary tract. In the spontaneously hypertensive rat, many synapses on GluR1-containing dendrites had the morphological features of synapses undergoing dynamic changes, including the presence of perforated synapses. These results suggest that changes in afferent activity to the nucleus of the solitary tract during sustained hypertension alter both the dendritic structure and AMPA receptor content of some neurons. These structural changes may be a substrate for central resetting of the baroreceptor reflex.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3