Combined Genealogical, Mapping, and Expression Approaches to Identify Spontaneously Hypertensive Rat Hypertension Candidate Genes

Author:

Hinojos Cruz A.1,Boerwinkle Eric1,Fornage Myriam1,Doris Peter A.1

Affiliation:

1. From the Institute of Molecular Medicine (C.A.H., E.B., M.F., P.A.D.) and Human Genetics Center (E.B.), University of Texas Health Science Center, Houston.

Abstract

Allelic expression in genes has become recognized as a heritable trait by which phenotypes are generated. We have examined gene expression in the rat kidney using genome-wide microarray technology (Affymetrix). Gene expression was determined across 4 rat strains, 3 hypertensive spontaneously hypertensive rat (SHR) substrains (SHR-A3, SHR-B2, and SHR-C), and a normotensive strain (Wistar-Kyoto [WKY]). Expression measurements were made in multiple animals from all strains at 4 time points (4 weeks, 8 weeks, 12 weeks, and 18 weeks of age), covering the prehypertensive period in SHR (4 weeks), and the period of rapidly rising blood pressure (8 and 12 weeks) and of sustained hypertension (18 weeks). Regression analysis revealed a close relationship across all strains during the first 3 time points, after which SHR-A3 became a substantial outlier. SHR-B2 and SHR-C demonstrated a very close relationship in gene expression at all times but also showed increased differences compared with the other strains at 18 weeks of age. We identified genes that were consistently different in expression, comparing all SHR substrains at each time point with WKY. The resulting list of genes was compared with blood pressure quantitative trait loci reported for SHR to refine a number of genes consistently differentially expressed between SHR substrains and WKY, persistently differentially expressed across multiple time points, and located in SHR blood pressure–determinative regions of the genome. Genealogical relationships and SHR substrain intercrosses suggest that genes responsible for heritable hypertension in SHR are shared across SHR substrains. The present approach identifies a number of genes that may influence blood pressure in SHR by virtue of allelic effects on gene expression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3