Human Blood-Derived Macrophages Induce Apoptosis in Human Plaque-Derived Vascular Smooth Muscle Cells by Fas-Ligand/Fas Interactions

Author:

Boyle Joseph J.1,Bowyer David E.1,Weissberg Peter L.1,Bennett Martin R.1

Affiliation:

1. From the Unit of Cardiovascular Medicine, Addenbrooke’s Hospital (J.J.B., P.L.W., M.R.B.), and the Department of Pathology, University of Cambridge (D.E.B.), Cambridge, UK.

Abstract

Human atherosclerotic plaques that rupture are characterized by relatively low vascular smooth muscle cell (VSMC) and high inflammatory cell contents. Ruptured plaques also contain higher numbers of apoptotic VSMCs than do stable lesions, suggesting that VSMC apoptosis may promote plaque rupture. We examined the ability of human monocytes/macrophages to induce apoptosis of VSMCs derived from human carotid plaque, aortic media, and coronary media. Macrophages, but not T lymphocytes, induced a dose-dependent apoptosis of VSMCs, which required monocyte maturation to macrophages and direct cell-cell contact/proximity. VSMC apoptosis was inhibited by neutralizing antibodies to Fas-ligand (Fas-L) or an Fas-Fc fusion protein, indicating the requirement for membrane-bound Fas and Fas-L. Monocyte maturation was associated with increased surface expression of Fas-L, coincident with the onset of cytotoxicity. VSMCs expressed surface Fas, which was increased in plaque VSMCs, and plaque VSMCs also underwent Fas-induced apoptosis. We conclude that human macrophages potently induce human VSMC apoptosis, which requires direct cell-cell interactions and is in part dependent on Fas/Fas-L interactions. Macrophage-induced VSMC apoptosis may therefore directly promote plaque rupture.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3