Passive stiffness of isolated cardiac and skeletal myocytes in the hamster.

Author:

Fish D,Orenstein J,Bloom S

Abstract

Single cardiac myocytes and skeletal myocyte fragments, devoid of interstitial collagen but with intact glycocalyx, were prepared by mechanical disaggregation of hamster ventricular myocardium and caudal gracilis muscle, respectively. Passive stiffness was studied by examining the sarcomere length-tension relationship over the approximate Eulerian stress range of 0-20 mN/mm2 for cardiac myocytes and 0-120 mN/mm2 for skeletal myocytes. Creep and stress-relaxation became apparent only when cells were stretched to sarcomere lengths close to, or exceeding, 2.2 micron for the cardiac myocytes, and 2.7 micron for the skeletal myocytes. Stress-relaxation and creep occurred simultaneously, suggesting that the sarcomere is at least one of the structural components responsible for viscoelasticity. The differential strain stiffness constant was calculated from the regression of natural stress [Ln(mN/mm2)] against differential strain [(L-Lo)/Lo] and found to be 7.48 +/- 1.73 for the ventricular myocytes and 5.77 +/- 0.87 for the skeletal myocyte fragments. The natural strain stiffness constant was obtained from the regression of natural stress against natural strain [Ln(L/Lo)]. The natural strain stiffness constant was 30-50% higher than the differential strain constant. The high correlation coefficients obtained for both regressions indicate that the length-tension relationships for these isolated cardiac and skeletal myocytes can be very closely fitted to the single exponential function, sigma = C X exp[K(epsilon)]. The length-tension curves obtained for the skeletal myocyte fragments are qualitatively and quantitatively similar to those obtained by others with intact skeletal muscle. The cardiac myocyte length-tension curves are qualitatively, but not quantitatively, similar to those obtained with cardiac muscle. Isolated ventricular myocytes are stiffer than similarly isolated skeletal myocytes. These findings suggest that cellular structures contribute to myocardial stiffness in the hamster.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference40 articles.

1. Bishop SP Drummond JL (1979) Surface morphology and cell size measurement of isolated rat cardiac myocytes. j Mol Cell Cardiol 11: 423-433

2. Calcium metabolism and active tension in mechanically disaggregated heart muscle

3. The collagen matrix of the heart;Borg TK;Fed Proc,1981

4. Borg TK Ranson WF Moslehy FA Caulfield JB (1981b) Structural basis of ventricular stiffness Lab Invest 44: 49-54

5. Braunwald E Ross J Sonnenblick EH (1976) Mechanisms of Contraction of the Normal and Failing Heart ed 2. Boston Little Brown and Company pp 41-43

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3