Force properties of skinned cardiac muscle following increasing volumes of aerobic exercise in rats

Author:

Boldt Kevin R.12ORCID,Rios Jaqueline L.12,Joumaa Venus12,Herzog Walter12

Affiliation:

1. Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada

2. Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada

Abstract

The positive effects of chronic endurance exercise training on health and performance have been well documented. These positive effects have been evaluated primarily at the structural level, and work has begun to evaluate mechanical adaptations of the myocardium. However, it remains poorly understood how the volume of exercise training affects cardiac adaptation. To gain some understanding, we subjected 3-mo-old Sprague-Dawley rats ( n = 23) to treadmill running for 11 wk at one of three exercise volumes (moderate, high, and extra high). Following training, hearts were excised and mechanical testing was completed on skinned trabecular fiber bundles. Performance on a maximal fitness test was dose dependent on training volume, where greater levels of training led to greater performance. No differences were observed between animals from any group for maximal active stress and passive stress at a sarcomere length of 2.2 µm. Heart mass and passive stress at sarcomere lengths beyond 2.4 µm increased in a dose-dependent manner for animals in the control and moderate- and high-duration groups. However, hearts from animals in the extra high-duration group presented with inhibited responses for heart mass and passive stress, despite performing greatest on a graded treadmill fitness test. These results suggest that heart mass and passive stress adapt in a dose-dependent manner, until exercise becomes excessive and adaptation is inhibited. Our findings are in agreement with the beneficial role exercise has in cardiac adaptation. However, excessive exercise comes with risks of maladaptation, which must be weighed against the desire to increase performance. NEW & NOTEWORTHY For the first time, we present findings on cardiac trabecular muscle passive stiffness and show the effect of excessive exercise on the heart. We demonstrated that heart mass increases with exercise until a maximum, after which greater exercise volume results in inhibited adaptation. At paraphysiological lengths, passive stiffness increases with exercise but to a lesser degree with excessive training. Despite greater performance on graded exercise tests, animals in the highest trained group exhibited possible maladaptation.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)

Canada Research Chairs (Chaires de recherche du Canada)

Alberta Innovates - Health Solutions (AIHS)

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)

Brazil Ministry of Education CAPES Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3