Intracellular sodium and the positive inotropic effect of veratridine and cardiac glycoside in sheep Purkinje fibers.

Author:

Brill D M,Wasserstrom J A

Abstract

Veratridine is a sodium channel toxin that exerts a powerful positive inotropic effect and prolongs the action potential duration in the heart. To determine the basis of the inotropic action of veratridine and to examine the effects of dissimilar methods of raising intracellular sodium activity on contractility, we measured twitch tension and intracellular sodium activity using sodium-sensitive microelectrodes in stimulated sheep Purkinje fibers exposed to veratridine and in voltage-clamped fibers exposed to veratridine and cardiac glycoside. In stimulated fibers, veratridine (0.1-1 microM) produced coincident increases in intracellular sodium activity, action potential duration, and tension. In voltage-clamped fibers, veratridine (1-2 microM) and acetylstrophanthidin (0.1 microM) raised intracellular sodium activity and tension to a comparable degree. Tetrodotoxin (10 microM) abolished the mechanical, electrophysiological, and ionic changes produced by veratridine. The relationship between intracellular sodium activity and tension in voltage-clamped fibers (n = 6) was indistinguishable for veratridine and acetylstrophanthidin and could be fitted either with a linear function with slopes of 122.8% and 124.2%, respectively, or with a power function with slopes of 4.60 and 4.54, respectively, where the slope represents the exponential power of intracellular sodium activity to which tension is proportional. These results indicate that the positive inotropic action of veratridine is entirely accounted for by accumulation of intracellular sodium, which increases intracellular calcium available for contraction by sodium-calcium exchange. This study is the first direct demonstration that veratridine or any other sodium channel toxin affects intracellular sodium activity and suggests that the inotropic potency of veratridine and cardiac glycoside rely on the same mechanism, namely, elevation of intracellular sodium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference29 articles.

1. Effects of veratrine on repolarization in the canine right bundle branch;Arbel ER;Am J Physiol,1975

2. The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres

3. Brill DM Wasserstrom JA Fozzard HA (1985) Effects of veratridine and cardiac glycoside on intracellular Na and twitch tension in voltage-clamped sheep Purkinje fibers (abstr). Circulation 72 (suppl II): 146

4. Neurotoxins that Act on Voltage-Sensitive Sodium Channels in Excitable Membranes

5. Control of cardiac contractility at the cellular level;Chapman RA;Am J Physiol,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3