Vasopressin causes endothelium-dependent relaxations of the canine basilar artery.

Author:

Katusic Z S,Shepherd J T,Vanhoutte P M

Abstract

The effect of synthetic 8-arginine vasopressin (vasopressin) was studied in isolated canine basilar, left circumflex coronary, and femoral arteries of the dog. Vascular rings with and without endothelium were suspended for isometric tension recording in physiological salt solution. The removal of the endothelium was confirmed by the absence of relaxations induced by either thrombin (basilar arteries) or acetylcholine (coronary and femoral arteries). In the basilar artery, vasopressin induced concentration-dependent inhibition of myogenic tone. In basilar and coronary arteries, the hormone caused concentration-dependent relaxations during contractions evoked by prostaglandin F2 alpha. In femoral arteries, vasopressin caused contraction. After removal of the endothelium, the inhibitory responses to vasopressin were abolished in basilar arteries and significantly reduced in left circumflex coronary arteries. The contractions of femoral arteries were not affected by endothelium removal. The V1-vasopressinergic antagonist d(CH2)5Tyr(Me)AVP prevented the inhibitory response to vasopressin, but did not alter endothelium-dependent relaxations of basilar arteries caused by adenosine diphosphate. These results demonstrate that the endothelial cells mediate relaxation induced by vasopressin via specific V1-vasopressinergic receptors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 311 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atherogenic diet-diminished endothelial glycocalyx contributes to impaired vasomotor properties in rat;American Journal of Physiology-Heart and Circulatory Physiology;2020-10-01

2. Bibliometric analysis of the top 100 most cited articles on the basilar artery;Surgical Neurology International;2020-09-25

3. Use of vasopressin in neonatal hypertrophic obstructive cardiomyopathy: case series;Journal of Perinatology;2020-09-19

4. Organ System Response to Cardiac Function—Neurology;Critical Heart Disease in Infants and Children;2019

5. Neonatal cerebrovascular autoregulation;Pediatric Research;2018-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3