Calcium-dependent mechanical oscillations occur spontaneously in unstimulated mammalian cardiac tissues.

Author:

Kort A A,Lakatta E G

Abstract

In quiescent rat ventricular myocardium, bathed in solution of 2 mM Ca++ or less, it has been previously demonstrated that spontaneous microscopic oscillatory cell motion is present and interacts with an incident laser beam to produce scattered light intensity fluctuations which can be monitored to quantify the underlying motion. The present study shows that scattered light intensity fluctuations are not present under any conditions in frog atrial or ventricular preparations, but do occur in each type of mammalian cardiac tissue studied in the unstimulated state. The magnitude of scattered light intensity fluctuations in mammalian tissues varies with species and cellular Ca++ loading. In some tissues, e.g., rabbit or ferret ventricle, either an increase in the Ca++ concentration in the perfusate [( Ca++]e), reduction of perfusate Na+ concentration [( Na+]e), or addition of cardiac glycosides was required to elicit scattered light intensity fluctuations; in other tissues, however, e.g., the canine Purkinje fiber, atria, and ventricle, and guinea pig atria, scattered light intensity fluctuations were present at 2 mM [Ca++]e in the absence of experimental Ca++ loading. Scattered light intensity fluctuations were not affected by LaCl3, or verapamil, and were reversibly abolished by caffeine. When the pCa in the myofilament space is kept constant in detergent "skinned" fibers, scattered light intensity fluctuations are not present during contractile activation. We conclude: that scattered light intensity fluctuations are due to spontaneous intracellular Ca++ oscillations that require a functional sarcoplasmic reticulum; that the potential to exhibit these oscillations is a fundamental property of mammalian excitable cardiac cells; and that, in many mammalian tissues, these oscillations are present in the unstimulated state, even in the absence of experimental perturbations to enhance cell Ca++ loading.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference57 articles.

1. Cardiac muscle: An attempt to relate structure to function,

2. A comparative survey of the function, mechanism and control of cellular oscillators;Berridge;J Exp Biol,1979

3. Blinks JR Wier WG Morgan JP Hess P (1981) In Advances in Pharmacology and Therapeutics II: Cardiorenal and Cell Pharmacology Proceedings of the 8th International Congress of Pharmacology. New York Pergamon Press pp 205-216

4. Calcium metabolism and active tension in mechanically disaggregated heart muscle

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3