Affiliation:
1. Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md 20892.
Abstract
The cells in the renal medulla protect themselves from the extracellular hypertonicity in that region of the kidney by accumulating large amounts of sorbitol, inositol, glycerophosphorylcholine, and betaine. The system is uniquely active in this part of the body, but it represents a throwback to primitive mechanisms by which cells in virtually all organisms, including bacteria, yeasts, plants, and lower animals counteract water stress. In this brief review, we summarize how these "compatible organic osmolytes" help the renal medullary cells to survive, the mechanisms by which the organic osmolytes are accumulated, and how the accumulation is controlled to adjust for changing extracellular NaCl and urea concentrations. The compatible organic osmolytes are all intermediates in important biochemical pathways, and although the medical consequences are not yet fully worked out, it is already apparent that inappropriate accumulation of these solutes has major pathophysiological consequences.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献