Plasma Metabolites–Based Prediction in Cardiac Surgery–Associated Acute Kidney Injury

Author:

Cui Hao1ORCID,Shu Songren1ORCID,Li Yuan2,Yan Xin1,Chen Xiao1,Chen Zujun3,Hu Yuxuan4,Chang Yuan1,Hu Zhenliang1,Wang Xin25,Song Jiangping1ORCID

Affiliation:

1. The Cardiomyopathy Research Group State Key Laboratory of Cardiovascular Disease Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China

2. Department of Cardiovascular Surgery Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China

3. Surgical Intensive Care Unit Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China

4. Capital Normal University High School Beijing China

5. Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials Center for Cardiovascular Experimental Study and Evaluation Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China

Abstract

Background Cardiac surgery–associated acute kidney injury (CSA‐AKI) is a common postoperative complication following cardiac surgery. Currently, there are no reliable methods for the early prediction of CSA‐AKI in hospitalized patients. This study developed and evaluated the diagnostic use of metabolomics‐based biomarkers in patients with CSA‐AKI. Methods and Results A total of 214 individuals (122 patients with acute kidney injury [AKI], 92 patients without AKI as controls) were enrolled in this study. Plasma samples were analyzed by liquid chromatography tandem mass spectrometry using untargeted and targeted metabolomic approaches. Time‐dependent effects of selected metabolites were investigated in an AKI swine model. Multiple machine learning algorithms were used to identify plasma metabolites positively associated with CSA‐AKI. Metabolomic analyses from plasma samples taken within 24 hours following cardiac surgery were useful for distinguishing patients with AKI from controls without AKI. Gluconic acid, fumaric acid, and pseudouridine were significantly upregulated in patients with AKI. A random forest model constructed with selected clinical parameters and metabolites exhibited excellent discriminative ability (area under curve, 0.939; 95% CI, 0.879–0.998). In the AKI swine model, plasma levels of the 3 discriminating metabolites increased in a time‐dependent manner ( R 2 , 0.480–0.945). Use of this AKI predictive model was then confirmed in the validation cohort (area under curve, 0.972; 95% CI, 0.947–0.996). The predictive model remained robust when tested in a subset of patients with early‐stage AKI in the validation cohort (area under curve, 0.943; 95% CI, 0.883–1.000). Conclusions High‐resolution metabolomics is sufficiently powerful for developing novel biomarkers. Plasma levels of 3 metabolites were useful for the early identification of CSA‐AKI.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3