An Integrated Approach Based on Clinical Data Combined with Metabolites and Biomarkers for the Assessment of Post-Operative Complications after Cardiac Surgery

Author:

Meinarovich Peter1,Pautova Alisa1ORCID,Zuev Evgenii1,Sorokina Ekaterina1,Chernevskaya Ekaterina1ORCID,Beloborodova Natalia1ORCID

Affiliation:

1. Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia

Abstract

Background: Early diagnosis of post-operative complications is an urgent task, allowing timely prescribing of appropriate therapy and reducing the cost of patient treatment. The purpose of this study was to determine whether an integrated approach based on clinical data, along with metabolites and biomarkers, had greater predictive value than the models built on fewer data in the early diagnosis of post-operative complications after cardiac surgery. Methods: The study included patients (n = 62) admitted for planned cardiac surgery (coronary artery bypass grafting with cardiopulmonary bypass) with (n = 26) or without (n = 36) post-operative complications. Clinical and laboratory data on the first day after surgery were analyzed. Additionally, patients’ blood samples were collected before and on the first day after surgery to determine biomarkers and metabolites. Results: Multivariate PLS-DA models, predicting the presence or absence of post-operative complications, were built using clinical data, concentrations of metabolites and biomarkers, and the entire data set (ROC-AUC = 0.80, 0.71, and 0.85, respectively). For comparison, we built univariate models using the EuroScore2 and SOFA scales, concentrations of lactate, the dynamic changes of 4-hydroxyphenyllactic acid, and the sum of three sepsis-associated metabolites (ROC-AUC = 0.54, 0.79, 0.62, 0.58, and 0.70, respectively). Conclusions: The proposed complex model using the entire dataset had the best characteristics, which confirms the expediency of searching for new predictive models based on a variety of factors.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3