Left Ventricular Mass

Author:

Myerson Saul G.1,Montgomery Hugh E.1,World Michael J.1,Pennell Dudley J.1

Affiliation:

1. From the Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital (S.G.M., D.J.P.), London; Centre for Cardiovascular Genetics, University College London (H.E.M.), London; and Royal Defense Medical College (M.J.W.), Gosport, Hampshire, UK.

Abstract

The study of left ventricular (LV) hypertrophy is hindered by problems with LV mass measurement by echocardiography. Both the M-mode and 2D area-length formulas for calculating LV mass assume a fixed geometric shape, which may be a source of error. We examined this hypothesis by using cardiovascular magnetic resonance images to eliminate the confounding effects of acoustic access and image quality. LV mass was measured directly in 212 healthy subjects by means of a standard 3D cardiovascular magnetic resonance technique. LV mass was also calculated by using the cube-function and area-length formulas with measurements from the magnetic resonance images. A comparison of serial measurements was made by examining the changes in LV mass by all 3 techniques in those completing an exercise program (n=140). The cube-function technique showed a consistent underestimation of LV mass of 14.3 g, and there were wide 95% limits of agreement (±57.6 g and ±46.3 g for cube-function and area-length techniques, respectively) when compared with 3D measurement. There were similarly wide limits of agreement for the change in mass (±55.2 g and ±44.8 g for cube-function and area-length, respectively). The assumption of geometric shape in the cube-function and area-length formulas resulted in significant variation in LV mass estimates from direct measurement by using a 3D technique. The technique cannot be recommended either at a single time point or for serial studies in small populations; 3D imaging techniques, such as cardiovascular magnetic resonance, are preferable.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3