Contribution of Endothelial Nitric Oxide to Blood Pressure in Humans

Author:

Gamboa Alfredo1,Shibao Cyndya1,Diedrich André1,Choi Leena1,Pohar Bojan1,Jordan Jens1,Paranjape Sachin1,Farley Ginnie1,Biaggioni Italo1

Affiliation:

1. From the Departments of Medicine (A.G., A.D., B.P., S.P., G.F., I.B.) and Biostatistics (L.C.), Vanderbilt University, Nashville, Tenn; and Clinical Research Center (J.J.), Franz Volhard Clinic, Berlin, Germany.

Abstract

Impaired endothelial-derived NO (eNO) is invoked in the development of many pathological conditions. Systemic inhibition of NO synthesis, used to assess the importance of NO to blood pressure (BP) regulation, increases BP by ≈15 mm Hg. This approach underestimates the importance of eNO, because BP is restrained by baroreflex mechanisms and does not account for a role of neurally derived NO. To overcome these limitations, we induced complete autonomic blockade with trimethaphan in 17 normotensive healthy control subjects to eliminate baroreflex mechanisms and contribution of neurally derived NO. Under these conditions, the increase in BP reflects mostly blockade of tonic eNO. N G -Monomethyl- l -arginine (250 μg/kg per minute IV) increased mean BP by 6±3.7 mm Hg (from 77 to 82 mm Hg) in intact subjects and by 21±8.4 mm Hg (from 75 to 96 mm Hg) during autonomic blockade. We did not find a significant contribution of neurally derived NO to BP regulation after accounting for baroreflex buffering. To further validate this approach, we compared the effect of NOS inhibition during autonomic blockade in 10 normotensive individuals with that of 6 normotensive smokers known to have endothelial dysfunction but who were otherwise normal. As expected, normotensive smokers showed a significantly lower increase in systolic BP during selective eNO blockade (11±4.5 versus 30±2.3 mm Hg in normotensive individuals; P <0.005). Thus, we report a novel approach to preferentially evaluate the role of eNO on BP control in normal and disease states. Our results suggest that eNO is one of the most potent metabolic determinants of BP in humans, tonically restraining it by ≈30 mm Hg.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3