Relationship between muscle sympathetic nerve activity and systemic hemodynamics during nitric oxide synthase inhibition in humans

Author:

Charkoudian N.,Joyner M. J.,Barnes S. A.,Johnson C. P.,Eisenach J. H.,Dietz N. M.,Wallin B. G.

Abstract

Large interindividual differences exist in resting sympathetic nerve activity (SNA) among normotensive humans with similar arterial pressure (AP). We recently showed inverse relationships of resting SNA with cardiac output (CO) and vascular adrenergic responsiveness that appear to balance the influence of differences in SNA on blood pressure. In the present study, we tested whether nitric oxide (NO)-mediated vasodilation has a role in this balance by evaluating hemodynamic responses to systemic NO synthase (NOS) inhibition in individuals with low and high resting muscle SNA (MSNA). We measured MSNA via peroneal microneurography, CO via acetylene uptake and AP directly, at baseline and during increasing systemic doses of the NOS inhibitor NG-monomethyl-l-arginine (l-NMMA). Baseline MSNA ranged from 9 to 38 bursts/min (13 to 68 bursts/100 heartbeats). l-NMMA caused dose-dependent increases in AP and total peripheral resistance and reflex decreases in CO and MSNA. Increases in AP with l-NMMA were greater in individuals with high baseline MSNA ( PANOVA < 0.05). For example, after 8.5 mg/kg of l-NMMA, in the low MSNA subgroup ( n = 6, 28 ± 4 bursts/100 heartbeats), AP increased 9 ± 1 mmHg, whereas in the high-MSNA subgroup ( n = 6, 58 ± 3 bursts/100 heartbeats), AP increased 15 ± 2 mmHg ( P < 0.01). The high-MSNA subgroup had lower baseline CO and smaller decreases in CO with l-NMMA, but changes in total peripheral resistance were not different between groups. We conclude that differences in CO among individuals with varying sympathetic traffic have important hemodynamic implications during disruption of NO-mediated vasodilation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3