Transcutaneous Vagus Nerve Stimulation Ameliorates the Phenotype of Heart Failure With Preserved Ejection Fraction Through Its Anti-Inflammatory Effects

Author:

Elkholey Khaled1,Niewiadomska Monika1,Morris Lynsie1,Whyte Seabrook1,Houser Jeremy2,Humphrey Mary Beth2ORCID,Stavrakis Stavros1ORCID

Affiliation:

1. Cardiovascular Section, Department of Medicine (K.E., M.N., L.M., S.W., S.S.), University of Oklahoma Health Science Center, Oklahoma City.

2. Rheumatology Section, Department of Medicine (J.H., M.B.H.), University of Oklahoma Health Science Center, Oklahoma City.

Abstract

Background: A systemic proinflammatory state plays a central role in the development of heart failure with preserved ejection fraction (HFpEF). Low-level transcutaneous vagus nerve stimulation (LLTS) suppresses inflammation in animals and humans, mediated by an α7nAchR (alpha7 nicotinic acetylcholine receptor)-dependent pathway. We examined the effects of LLTS on cardiac function, inflammation, and fibrosis in the presence of α7nAchR pharmacological blockade in a rat model of HFpEF. Methods: Dahl salt-sensitive rats at 7 weeks of age were treated with high-salt diet for 6 weeks to induce HFpEF, followed by 4 weeks of (1) LLTS, (2) LLTS with the α7nAchR blocker methyllycaconitine, (3) sham, and (4) olmesartan. Blood pressure, cardiac function by echocardiography, heart rate variability, and serum cytokines were measured at 13 and 17 weeks of age. Cardiac fibrosis, inflammatory cell infiltration, and gene expression were determined at 17 weeks. Results: LLTS attenuated the increase in blood pressure; improved cardiac function; decreased inflammatory cytokines, macrophage infiltration, and fibrosis; and improved survival compared with other groups. Methyllycaconitine attenuated these effects, whereas olmesartan did not improve cardiac function or fibrosis despite maintaining similar blood pressure as LLTS. Heart rate variability was similarly improved in the LLTS and LLTS plus methyllycaconitine groups but remained low in the other groups. LLTS reversed the dysregulated inflammatory signaling pathways in HFpEF hearts. Conclusions: Neuromodulation with LLTS improved cardiac function in a rat model of HFpEF through its anti-inflammatory and antifibrotic effects. These results provide the basis for further clinical trials in humans.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3