From Systemic Inflammation to Myocardial Fibrosis

Author:

Paulus Walter J.1ORCID,Zile Michael R.2ORCID

Affiliation:

1. Amsterdam University Medical Centers, The Netherlands (W.J.P.).

2. RHJ Department of Veterans Affairs Medical Center, Medical University of South Carolina, Charleston (M.R.Z.).

Abstract

In accordance with the comorbidity-inflammation paradigm, comorbidities and especially metabolic comorbidities are presumed to drive development and severity of heart failure with preserved ejection fraction through a cascade of events ranging from systemic inflammation to myocardial fibrosis. Recently, novel experimental and clinical evidence emerged, which strengthens the validity of the inflammatory/profibrotic paradigm. This evidence consists among others of (1) myocardial infiltration by immunocompetent cells not only because of an obesity-induced metabolic load but also because of an arterial hypertension-induced hemodynamic load. The latter is sensed by components of the extracellular matrix like basal laminin, which also interact with cardiomyocyte titin; (2) expression in cardiomyocytes of inducible nitric oxide synthase because of circulating proinflammatory cytokines. This results in myocardial accumulation of degraded proteins because of a failing unfolded protein response; (3) definition by machine learning algorithms of phenogroups of patients with heart failure with preserved ejection fraction with a distinct inflammatory/profibrotic signature; (4) direct coupling in mediation analysis between comorbidities, inflammatory biomarkers, and deranged myocardial structure/function with endothelial expression of adhesion molecules already apparent in early preclinical heart failure with preserved ejection fraction (HF stage A, B). This new evidence paves the road for future heart failure with preserved ejection fraction treatments such as biologicals directed against inflammatory cytokines, stimulation of protein ubiquitylation with phosphodiesterase 1 inhibitors, correction of titin stiffness through natriuretic peptide—particulate guanylyl cyclase—PDE9 (phosphodiesterase 9) signaling and molecular/cellular regulatory mechanisms that control myocardial fibrosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3