Experimental Right Ventricular Hypertension Induces Regional β1‐Integrin–Mediated Transduction of Hypertrophic and Profibrotic Right and Left Ventricular Signaling

Author:

Sun Mei12,Ishii Ryo12,Okumura Kenichi12,Krauszman Adrienn3,Breitling Siegfried3,Gomez Olga12,Hinek Aleksander2,Boo Stellar4,Hinz Boris4,Connelly Kim A.3,Kuebler Wolfgang M.3,Friedberg Mark K.12

Affiliation:

1. Division of Cardiology, Labatt Family Heart Center, Toronto, Ontario, Canada

2. Translational Medicine, Hospital for Sick Children and University of Toronto, Ontario, Canada

3. The Keenan Research Center for Biomedical Science, St Michael's Hospital, Toronto, Canada

4. Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada

Abstract

Background Development of right ventricular ( RV ) hypertension eventually contributes to RV and left ventricular ( LV ) myocardial fibrosis and dysfunction. The molecular mechanisms are not fully elucidated. Methods and Results Pulmonary artery banding was used to induce RV hypertension in rats in vivo. Then, we evaluated cardiac function and regional remodeling 6 weeks after pulmonary artery banding. To further elucidate mechanisms responsible for regional cardiac remodeling, we also mimicked RV hypertensive stress by cyclic mechanical stretching applied to confluent cultures of cardiac fibroblasts, isolated from the RV free wall, septal hinge points, and LV free wall. Echocardiography and catheter evaluation demonstrated that rats in the pulmonary artery banding group developed RV hypertension with leftward septal displacement, LV compression, and increased LV end‐diastolic pressures. Picrosirius red staining indicated that pulmonary artery banding induced marked RV fibrosis and dysfunction, with prominent fibrosis and elastin deposition at the septal hinge points but less LV fibrosis. These changes were associated with proportionally increased expressions of integrin‐β1 and profibrotic signaling proteins, including phosphorylated Smad2/3 and transforming growth factor‐β1. Moreover, mechanically stretched fibroblasts also expressed significantly increased levels of α‐smooth muscle actin, integrin‐β1, transforming growth factor‐β1, collagen I deposition, and wrinkle formation on gel assays, consistent with myofibroblast transformation. These changes were not observed in parallel cultures of mechanically stretched fibroblasts, preincubated with the integrin inhibitor ( BTT ‐3033). Conclusions Experimentally induced RV hypertension triggers regional RV , hinge‐point, and LV integrin β1‐dependent mechanotransduction signaling pathways that eventually trigger myocardial fibrosis via transforming growth factor‐β1 signaling. Reduced LV fibrosis and preserved global function, despite geometrical and pressure aberrations, suggest a possible elastin‐mediated protective mechanism at the septal hinge points.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3