Adverse structural and mechanical remodelling of main pulmonary artery in experimental pulmonary arterial hypertension is associated with impaired right ventricle-pulmonary artery coupling and function

Author:

Mirani BahramORCID,Dauz John D.ORCID,Yazaki KanaORCID,Latifi NedaORCID,Santerre J PaulORCID,Bendeck Michelle P.ORCID,Simmons Craig A.ORCID,Friedberg Mark K.ORCID

Abstract

AbstractRationaleCoupling between right ventricular function and the pulmonary vasculature determines outcomes in pulmonary arterial hypertension. The mechanics of the main pulmonary artery is an important but understudied determinant of right ventricular-pulmonary artery coupling.ObjectivesTo investigate the histology and mechanics of the pulmonary artery in relationship to right ventricular remodeling, mechanics, hemodynamics and coupling in experimental pulmonary arterial hypertension.MethodsIn a sugen+hypoxia rat model of pulmonary arterial hypertension, right ventricular hemodynamics were assessed by conductance catheters. Active tension-strain curves were generated using echocardiography. Main pulmonary artery and right ventricle free-wall were harvested to determine their macro- and micro-structure, composition, and mechanical properties. Comprehensive multivariate analyses elucidated relationships between pulmonary artery and right ventricle mechanics, structure and coupling.Measurements and Main ResultsPulmonary hypertensive main pulmonary arteries developed fibrosis relative to healthy controls, as did right ventricles, which also hypertrophied, with re-orientation of muscle fibres toward a tri-layer architecture reminiscent of normal left ventricular architecture. Increased glycosaminoglycan deposition and increased collagen-to-elastin ratio in the pulmonary artery; and increased collagen, as well as hypertrophy and reorganization of myofibers in the right ventricle, led to increased stiffness. This increase in stiffness was more pronounced in the longitudinal direction in the high- and low-strain regime for the pulmonary artery and right ventricle, respectively, causing increased mechanical anisotropy. Main pulmonary artery stiffening correlated significantly with right ventricular tissue mechanical remodelling and reduced systolic performance, cardiac output and right ventricle-pulmonary artery coupling.ConclusionsCompositional, structural, and mechanical changes in the main pulmonary artery correlate with adverse right ventricular remodeling, mechanics, function and coupling in pulmonary arterial hypertension. Therefore, increasing mechanical compliance of the large pulmonary arteries may be an important and novel therapeutic strategy for mitigating right ventricular failure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3