Essential Role for Prolyl Hydroxylase Domain Protein 2 in Oxygen Homeostasis of the Adult Vascular System

Author:

Takeda Kotaro1,Cowan Ann1,Fong Guo-Hua1

Affiliation:

1. From the Center for Vascular Biology, Center for Biomedical Imaging Technology, Department of Cell Biology, University of Connecticut Health Center, Farmington.

Abstract

Background— Prolyl hydroxylase domain (PHD) proteins, including PHD1, PHD2, and PHD3, mediate oxygen-dependent degradation of hypoxia-inducible factor (HIF)-α subunits. Although angiogenic roles of hypoxia-inducible factors are well known, the roles of PHDs in the vascular system remain to be established. Methods and Results— We evaluated angiogenic phenotypes in mice carrying targeted disruptions in genes encoding different PHD isoforms. Although Phd1 −/− and Phd3 −/− mice did not display apparent angiogenic defects, broad-spectrum conditional knockout of Phd2 led to hyperactive angiogenesis and angiectasia. Blood vessels in PHD2-deficient mice were highly perfusable. Furthermore, examination of medium-sized vessels in subendocardial layer in the heart demonstrated successful recruitment of vascular smooth muscle cells. Surprisingly, increased vascular growth was independent of local efficiency of Phd2 disruption. Mice carrying significant Phd2 disruption in multiple organs, including the liver, heart, kidney, and lung, displayed excessive vascular growth not only in these organs but also in the brain, where Phd2 disruption was very inefficient. More surprisingly, increased accumulation of hypoxia-inducible factor-1α and angiectasia in the liver were not accompanied by corresponding increases in hepatic expression of Vegfa or angiopoietin-1 . However, the serum vascular endothelial growth factor-A level was significantly increased in PHD2-deficient mice. Conclusions— PHD2, but not PHD1 and PHD3, is a major negative regulator for vascular growth in adult mice. Increased angiogenesis in PHD2-deficient mice may be mediated by a novel systemic mechanism.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3