Dimethyloxalylglycine (DMOG) Induced Hypoxia Promoted Migratory and Invasive Properties of HCT116 Colon Cancer Cell Line

Author:

Ahmad Nor Ezleen Qistina,Mohd Yusoff Amirah Alhusna,Md Hashim Nur Fariesha,Abdullah Nurul Akmaryanti,Muhamad Zakuan Noraina

Abstract

Hypoxia, a condition characterised by low oxygen levels, leads to increased production of a protein called hypoxia-inducible factor-1 alpha (HIF-1α) in cancer cells. This protein is involved in driving processes such as vascularization, cytoskeletal reorganisation, and epithelial-to-mesenchymal transformation (EMT), which contribute to metastasis. Previous studies used hypoxic workstations, chambers, and incubators to evaluate the effects of hypoxia on colon cancer cell lines. In a cell culture model, hypoxic conditions can also be induced using dimethyloxalylglycine (DMOG) as the hypoxia-mimicking agent. This study aims to investigate the effects of DMOG-induced hypoxia on colon cancer metastasis, focusing on cell migration and invasion. HCT116 cells were subjected to hypoxic conditions by treating them with DMOG, and the expression of HIF-1α proteins was measured at various time points, followed by wound healing and invasion assays. It was found that HIF-1α protein expression increases after 6 h of DMOG induction and persists for 24 h. At 6 and 24 h, a significantly higher percentage of hypoxic cells migrated compared to normoxic cells. The invasion assay demonstrated that hypoxic cells were more invasive than normoxic cells within 24 h. Thus, the increase in migration and invasion of cells is comparable to the increase in HIF-1α expression at 6 and 24 h. These findings suggest that DMOG induces HIF-1α expression in colon cancer cells, leading to enhanced cell migration and invasiveness. The established model can be further utilised in gene knockdown or drug treatment studies to evaluate the effects of hypoxia on cancer cells.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3