Pressure Overload–Induced Alterations in Fibrillar Collagen Content and Myocardial Diastolic Function

Author:

Bradshaw Amy D.1,Baicu Catalin F.1,Rentz Tyler J.1,Van Laer An O.1,Boggs Janet1,Lacy John M.1,Zile Michael R.1

Affiliation:

1. From the Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, RHJ Department of Veterans Affairs Medical Center, Medical University of South Carolina, Charleston.

Abstract

Background— Chronic pressure overload causes myocardial hypertrophy, increased fibrillar collagen content, and abnormal diastolic function. We hypothesized that one determinant of these pressure overload–induced changes is the extracellular processing of newly synthesized procollagen into mature collagen fibrils. We further hypothesized that secreted protein acidic and rich in cysteine (SPARC) plays a key role in post–synthetic procollagen processing in normal and pressure-overloaded myocardium. Methods and Results— To determine whether pressure overload–induced changes in collagen content and diastolic function are affected by the absence of SPARC, age-matched wild-type (WT) and SPARC-null mice underwent either transverse aortic constriction (TAC) for 4 weeks or served as nonoperated controls. Left ventricular (LV) collagen content was measured histologically by collagen volume fraction, collagen composition was measured by hydroxyproline assay as soluble collagen (1 mol/L NaCl extractable) versus insoluble collagen (mature cross-linked collagen), and collagen morphological structure was examined by scanning electron microscopy. SPARC expression was measured by immunoblot. LV, myocardial, and cardiomyocyte structure and function were assessed by echocardiographic, papillary muscle, and isolated cardiomyocyte studies. In WT mice, TAC increased LV mass, SPARC expression, myocardial diastolic stiffness, fibrillar collagen content, and soluble and insoluble collagen. In SPARC-null mice, TAC increased LV mass to an extent similar to WT mice. In addition, in SPARC-null mice, TAC increased fibrillar collagen content, albeit significantly less than that seen in WT TAC mice. Furthermore, the proportion of LV collagen that was insoluble was less in the SPARC-null TAC mice (86±2%) than in WT TAC mice (99±2%, P <0.05), and the proportion of collagen that was soluble was greater in the SPARC-null TAC mice (14±2%) than in WT TAC mice (1±2%, P <0.05) As a result, myocardial diastolic stiffness was lower in SPARC-null TAC mice (0.075±0.005) than in WT TAC mice (0.045±0.005, P <0.05). Conclusions— The absence of SPARC reduced pressure overload–induced alterations in extracellular matrix fibrillar collagen and diastolic function. These data support the hypothesis that SPARC plays a key role in post–synthetic procollagen processing and the development of mature cross-linked collagen fibrils in normal and pressure-overloaded myocardium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3