Human Plasma Thioredoxin-80 Increases With Age and in ApoE −/− Mice Induces Inflammation, Angiogenesis, and Atherosclerosis

Author:

Couchie Dominique1,Vaisman Boris1,Abderrazak Amna1,Mahmood Dler Faieeq Darweesh1,Hamza Magda M.1,Canesi Fanny1,Diderot Vimala1,El Hadri Khadija1,Nègre-Salvayre Anne1,Le Page Aurélie1,Fulop Tamas1,Remaley Alan T.1,Rouis Mustapha1

Affiliation:

1. From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de...

Abstract

Background: Thioredoxin (TRX)-1, a ubiquitous 12-kDa protein, exerts antioxidant and anti-inflammatory effects. In contrast, the truncated form, called TRX80, produced by macrophages induces upregulation of proinflammatory cytokines. TRX80 also promotes the differentiation of mouse peritoneal and human macrophages toward a proinflammatory M1 phenotype. Methods: TRX1 and TRX80 plasma levels were determined with a specific ELISA. A disintegrin and metalloproteinase domain-containing protein (ADAM)-10, ADAM-17, and ADAM-10 activities were measured with SensoLyte 520 ADAM10 Activity Assay Kit, Fluorimetric, and InnoZyme TACE Activity Kit, respectively. Western immunoblots were performed with specific antibodies to ADAM-10 or ADAM-17. Angiogenesis study was evaluated in vitro with human microvascular endothelial cells-1 and in vivo with the Matrigel plug angiogenesis assay in mice. The expression of macrophage phenotype markers was investigated with real-time polymerase chain reaction. Phosphorylation of Akt, mechanistic target of rapamycin, and 70S6K was determined with specific antibodies. The effect of TRX80 on NLRP3 inflammasome activity was evaluated by measuring the level of interleukin-1β and -18 in the supernatants of activated macrophages with ELISA. Hearts were used for lesion surface evaluation and immunohistochemical studies, and whole descending aorta were stained with Oil Red O. For transgenic mice generation, the human scavenger receptor (SR-A) promoter/enhancer was used to drive macrophage-specific expression of human TRX80 in mice. Results: In this study, we observed a significant increase of plasma levels of TRX80 in old subjects compared with healthy young subjects. In parallel, an increase in expression and activity of ADAM-10 and ADAM-17 in old peripheral blood mononuclear cells compared with those of young subjects was observed. Furthermore, TRX80 was found to colocalize with tumor necrosis factor-α, a macrophage M1 marker, in human atherosclerotic plaque. In addition, TRX80 induced the expression of murine M1 macrophage markers through Akt2/mechanistic target of rapamycin–C1/70S6K pathway and activated the inflammasome NLRP3, leading to the release of interleukin-1β and -18, potent atherogenic cytokines. Moreover, TRX80 exerts a powerful angiogenic effect in both in vitro and in vivo mouse studies. Finally, transgenic mice that overexpress human TRX80 specifically in macrophages of apoE −/− mice have a significant increase of aortic atherosclerotic lesions. Conclusions: TRX80 showed an age-dependent increase in human plasma. In mouse models, TRX80 was associated with a proinflammatory status and increased atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3