Free Fatty Acid Depletion Acutely Decreases Cardiac Work and Efficiency in Cardiomyopathic Heart Failure

Author:

Tuunanen Helena1,Engblom Erik1,Naum Alexandru1,Någren Kjell1,Hesse Birger1,Airaksinen K. E. Juhani1,Nuutila Pirjo1,Iozzo Patricia1,Ukkonen Heikki1,Opie Lionel H.1,Knuuti Juhani1

Affiliation:

1. From the Turku PET-Centre (H.T., A.N., K.N., P.N., P.I., H.U., J.K.) and the Department of Medicine, Turku University Central Hospital (E.E., K.E.J.A., P.N., H.U.), Turku, Finland; the Hatter Heart Research Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa (L.H.O.); the Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (B.H.); and the Institute of Clinical Physiology, National Research Council...

Abstract

Background— Metabolic modulators that enhance myocardial glucose metabolism by inhibiting free fatty acid (FFA) metabolism may improve cardiac function in heart failure patients. We studied the effect of acute FFA withdrawal on cardiac function in patients with heart failure caused by idiopathic dilated cardiomyopathy (IDCM). Methods and Results— Eighteen fasting nondiabetic patients with IDCM (14 men, 4 women, aged 58.8±8.0 years, ejection fraction 33±8.8%) and 8 matched healthy controls underwent examination of myocardial perfusion and oxidative and FFA metabolism, before and after acute reduction of serum FFA concentrations by acipimox, an inhibitor of lipolysis. Metabolism was monitored by positron emission tomography and [ 15 O]H 2 O, [ 11 C]acetate, and [ 11 C]palmitate. Left ventricular function and myocardial work were echocardiographically measured, and efficiency of forward work was calculated. Acipimox decreased myocardial FFA uptake by >80% in both groups. Rate–pressure product and myocardial perfusion remained unchanged, whereas stroke volume decreased similarly in both groups. In the healthy controls, reduced cardiac work was accompanied by decreased oxidative metabolism (from 0.071±0.019 to 0.055±0.016 min −1 , P <0.01). In IDCM patients, cardiac work fell, whereas oxidative metabolism remained unchanged and efficiency fell (from 35.4±12.6 to 31.6±13.3 mm Hg · L · g −1 , P <0.05). Conclusions— Acutely decreased serum FFA depresses cardiac work. In healthy hearts, this is accompanied by parallel decrease in oxidative metabolism, and myocardial efficiency is preserved. In failing hearts, FFA depletion did not downregulate oxidative metabolism, and myocardial efficiency deteriorated. Thus, failing hearts are unexpectedly more dependent than healthy hearts on FFA availability. We propose that both glucose and fatty acid oxidation are required for optimal function of the failing heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3