Metabolic Choreography of Energy Substrates During DCD Heart Perfusion

Author:

Trimigno Alessia1,Zhao Jifang1,Michaud William A.2,Paneitz Dane C.2,Chukwudi Chijioke2,D’Alessandro David A.2,Lewis Greg D.2,Minie Nathan F.2,Catricala Joseph P.2,Vincent Douglas E.3,Lopera Higuita Manuela4,Bolger-Chen Maya4,Tessier Shannon N.4,Li Selena2,O’Day Elizabeth M.1,Osho Asishana A.2,Rabi S. Alireza2

Affiliation:

1. Olaris, Inc., Framingham, MA.

2. Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Corrigan Minehan Heart Center, Boston, MA.

3. VentriFlo, Inc., Pelham, NH.

4. Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Shriner Children’s Boston, Boston, MA.

Abstract

Background. The number of patients waiting for heart transplant far exceeds the number of hearts available. Donation after circulatory death (DCD) combined with machine perfusion can increase the number of transplantable hearts by as much as 48%. Emerging studies also suggest machine perfusion could enable allograft “reconditioning” to optimize outcomes. However, a detailed understanding of the energetic substrates and metabolic changes during perfusion is lacking. Methods. Metabolites were analyzed using 1-dimensional 1H and 2-dimensional 13C-1H heteronuclear spectrum quantum correlation nuclear magnetic resonance spectroscopy on serial perfusate samples (N = 98) from 32 DCD hearts that were successfully transplanted. Wilcoxon signed-rank and Kruskal-Wallis tests were used to test for significant differences in metabolite resonances during perfusion and network analysis was used to uncover altered metabolic pathways. Results. Metabolite differences were observed comparing baseline perfusate to samples from hearts at time points 1–2, 3–4, and 5–6 h of perfusion and all pairwise combinations. Among the most significant changes observed were a steady decrease in fatty acids and succinate and an increase in amino acids, especially alanine, glutamine, and glycine. This core set of metabolites was also altered in a DCD porcine model perfused with a nonblood-based perfusate. Conclusions. Temporal metabolic changes were identified during ex vivo perfusion of DCD hearts. Fatty acids, which are normally the predominant myocardial energy source, are rapidly depleted, while amino acids such as alanine, glutamine, and glycine increase. We also noted depletion of ketone, β-hydroxybutyric acid, which is known to have cardioprotective properties. Collectively, these results suggest a shift in energy substrates and provide a basis to design optimal preservation techniques during perfusion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3