Regulation of the Human Cardiac Mitochondrial Ca 2+ Uptake by 2 Different Voltage-Gated Ca 2+ Channels

Author:

Michels Guido1,Khan Ismail F.1,Endres-Becker Jeannette1,Rottlaender Dennis1,Herzig Stefan1,Ruhparwar Arjang1,Wahlers Thorsten1,Hoppe Uta C.1

Affiliation:

1. From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany.

Abstract

Background— Impairment of intracellular Ca 2+ homeostasis and mitochondrial function has been implicated in the development of cardiomyopathy. Mitochondrial Ca 2+ uptake is thought to be mediated by the Ca 2+ uniporter (MCU) and a thus far speculative non-MCU pathway. However, the identity and properties of these pathways are a matter of intense debate, and possible functional alterations in diseased states have remained elusive. Methods and Results— By patch clamping the inner membrane of mitochondria from nonfailing and failing human hearts, we have identified 2 previously unknown Ca 2+ -selective channels, referred to as mCa1 and mCa2. Both channels are voltage dependent but differ significantly in gating parameters. Compared with mCa2 channels, mCa1 channels exhibit a higher single-channel amplitude, shorter openings, a lower open probability, and 3 to 5 subconductance states. Similar to the MCU, mCa1 is inhibited by 200 nmol/L ruthenium 360, whereas mCa2 is insensitive to 200 nmol/L ruthenium 360 and reduced only by very high concentrations (10 μmol/L). Both mitochondrial Ca 2+ channels are unaffected by blockers of other possibly Ca 2+ -conducting mitochondrial pores but were activated by spermine (1 mmol/L). Notably, activity of mCa1 and mCa2 channels is decreased in failing compared with nonfailing heart conditions, making them less effective for Ca 2+ uptake and likely Ca 2+ -induced metabolism. Conclusions— Thus, we conclude that the human mitochondrial Ca 2+ uptake is mediated by these 2 distinct Ca 2+ channels, which are functionally impaired in heart failure. Current properties reveal that the mCa1 channel underlies the human MCU and that the mCa2 channel is responsible for the ruthenium red–insensitive/low-sensitivity non-MCU–type mitochondrial Ca 2+ uptake.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3