Releasing the Brakes on the Fibrinolytic System in Pulmonary Emboli

Author:

Singh Satish1,Houng Aiilyan1,Reed Guy L.1

Affiliation:

1. From Department of Medicine, University of Tennessee Health Science Center, Memphis.

Abstract

Background: In patients with hemodynamically significant pulmonary embolism, physiological fibrinolysis fails to dissolve thrombi acutely and r-tPA (recombinant tissue-type plasminogen activator) therapy may be required, despite its bleeding risk. To examine potential mechanisms, we analyzed the expression of key fibrinolytic molecules in experimental pulmonary emboli, assessed the contribution of α2-antiplasmin to fibrinolytic failure, and compared the effects of plasminogen activation and α2-antiplasmin inactivation on experimental thrombus dissolution and bleeding. Methods: Pulmonary embolism was induced by jugular vein infusion of 125 I-fibrin or fluorescein isothiocyanate-fibrin labeled emboli in anesthetized mice. Thrombus site expression of key fibrinolytic molecules was determined by immunofluorescence staining. The effects of r-tPA and α2-antiplasmin inactivation on fibrinolysis and bleeding were examined in a humanized model of pulmonary embolism. Results: The plasminogen activation and plasmin inhibition system assembled at the site of acute pulmonary emboli in vivo. Thrombus dissolution was markedly accelerated in mice with normal α2-antiplasmin levels treated with an α2-antiplasmin–inactivating antibody ( P <0.0001). Dissolution of pulmonary emboli by α2-antiplasmin inactivation alone was comparable to 3 mg/kg r-tPA. Low-dose r-tPA alone did not dissolve emboli, but was synergistic with α2-antiplasmin inactivation, causing more embolus dissolution than clinical-dose r-tPA alone ( P <0.001) or α2-antiplasmin inactivation alone ( P <0.001). Despite greater thrombus dissolution, α2-antiplasmin inactivation alone, or in combination with low-dose r-tPA, did not lead to fibrinogen degradation, did not cause bleeding (versus controls), and caused less bleeding than clinical-dose r-tPA ( P <0.001). Conclusions: Although the fibrinolytic system assembles at the site of pulmonary emboli, thrombus dissolution is halted by α2-antiplasmin. Inactivation of α2-antiplasmin was comparable to pharmacological r-tPA for dissolving thrombi. However, α2-antiplasmin inactivation showed a unique pattern of thrombus specificity, because unlike r-tPA, it did not degrade fibrinogen or enhance experimental bleeding. This suggests that modifying the activity of a key regulator of the fibrinolytic system, like α2-antiplasmin, may have unique therapeutic value in pulmonary embolism.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3