Protein Kinase C-β Contributes to Impaired Endothelial Insulin Signaling in Humans With Diabetes Mellitus

Author:

Tabit Corey E.1,Shenouda Sherene M.1,Holbrook Monica1,Fetterman Jessica L.1,Kiani Soroosh1,Frame Alissa A.1,Kluge Matthew A.1,Held Aaron1,Dohadwala Mustali M.1,Gokce Noyan1,Farb Melissa G.1,Rosenzweig James1,Ruderman Neil1,Vita Joseph A.1,Hamburg Naomi M.1

Affiliation:

1. From the Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA.

Abstract

Background— Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling, through the activity of protein kinase C-β (PKCβ) and nuclear factor κB, reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. Methods and Results— We measured protein expression and insulin response in freshly isolated endothelial cells from patients with type 2 diabetes mellitus (n=40) and nondiabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes mellitus ( P =0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in nondiabetic subjects but not in diabetic patients ( P =0.003), consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients, indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=−0.541, P =0.02). Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes mellitus. Endothelial nuclear factor κB activation was higher in diabetes mellitus and was reduced with PKCβ inhibition. Conclusions— We provide evidence for the presence of altered eNOS activation, reduced insulin action, and inflammatory activation in the endothelium of patients with diabetes mellitus. Our findings implicate PKCβ activity in endothelial insulin resistance.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3