Endothelial Cell Coculture Within Tissue-Engineered Cardiomyocyte Sheets Enhances Neovascularization and Improves Cardiac Function of Ischemic Hearts

Author:

Sekine Hidekazu1,Shimizu Tatsuya1,Hobo Kyoko1,Sekiya Sachiko1,Yang Joseph1,Yamato Masayuki1,Kurosawa Hiromi1,Kobayashi Eiji1,Okano Teruo1

Affiliation:

1. From the Institute of Advanced Biomedical Engineering and Science (H.S., T.S., S.S., J.Y., M.Y., T.O.), Tokyo Women’s Medical University, Tokyo, Japan; the Department of Cardiovascular Surgery (K.H., H.K.), The Heart Institute of Japan, Tokyo Women’s Medical University, Tokyo, Japan; and the Division of Organ Replacement Research (E.K.), Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.

Abstract

Background— Regenerative therapies, including myocardial tissue engineering, have been pursued as a new possibility to repair the damaged myocardium, and previously the transplantation of layered cardiomyocyte sheets has been shown to be able to improve cardiac function after myocardial infarction. We examined the effects of promoting neovascularization by controlling the densities of cocultured endothelial cells (ECs) within engineered myocardial tissues created using our cell sheet-based tissue engineering approach. Methods and Results— Neonatal rat cardiomyocytes were cocultured with GFP-positive rat-derived ECs on temperature-responsive culture dishes. Cocultured ECs formed cell networks within the cardiomyocyte sheets, which were preserved during cell harvest from the dishes using simple temperature reduction. We also observed significantly increased in vitro production of vessel-forming cytokines by the EC-positive cardiac cell sheets. After layering of 3 cardiac cell sheets to create 3-dimensional myocardial tissues, these patch-like tissue grafts were transplanted onto infarcted rat hearts. Four weeks after transplantation, recovery of cardiac function could be significantly improved by increasing the EC densities within the engineered myocardial tissues. Additionally, when the EC-positive cardiac tissues were transplanted to myocardial infarction models, we observed significantly greater numbers of capillaries in the grafts as compared with the EC-negative cell sheets. Finally, blood vessels originating from the engineered EC-positive cardiac tissues bridged into the infarcted myocardium to connect with capillaries of the host heart. Conclusions— In vitro engineering of 3-dimensional cardiac tissues with preformed EC networks that can be easily connected to host vessels can contribute to the reconstruction of myocardial tissue grafts with a high potential for cardiac function repair. These results indicate that neovascularization can contribute to improved cardiac function after the transplantation of engineered cardiac tissues.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3