Innate Immune Nod1/RIP2 Signaling Is Essential for Cardiac Hypertrophy but Requires Mitochondrial Antiviral Signaling Protein for Signal Transductions and Energy Balance

Author:

Lin Han-Bin12,Naito Kotaro34,Oh Yena12,Farber Gedaliah1,Kanaan Georges5,Valaperti Alan64ORCID,Dawood Fayez4,Zhang Liyong12,Li Guo Hua12,Smyth David12,Moon Mark74,Liu Youan4,Liang Wenbin12,Rotstein Benjamin15ORCID,Philpott Dana J.,Kim Kyoung-Han12,Harper Mary-Ellen5,Liu Peter P.1274

Affiliation:

1. University of Ottawa Heart Institute (H.-B.L., Y.O., G.F., L.Z., G.H.L., D.S., W.L., B.R., K.-H.K., P.P.L.), University of Ottawa, Canada.

2. Departments of Medicine and Cellular and Molecular Medicine (H.-B.L., Y.O., L.Z., G.H.L., D.S., W.L., K.-H.K., P.P.L.), University of Ottawa, Canada.

3. Cardiology, Keiyu Hospital, Yokohama, Japan (K.N.).

4. University Health Network (K.N., A.V., F.D., M.M., Y.L., P.P.L.), University of Toronto, Canada.

5. Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine (G.K., B.R., M.-E.H.), University of Ottawa, Canada.

6. Department of Clinical Immunology of the University Hospital Zurich, Switzerland (A.V.).

7. Department of Physiology, Institute of Medical Science (M.M., P.P.L.), University of Toronto, Canada.

Abstract

Background: Cardiac hypertrophy is a key biological response to injurious stresses such as pressure overload and, when excessive, can lead to heart failure. Innate immune activation by danger signals, through intracellular pattern recognition receptors such as nucleotide-binding oligomerization domain 1 (Nod1) and its adaptor receptor-interacting protein 2 (RIP2), might play a major role in cardiac remodeling and progression to heart failure. We hypothesize that Nod1/RIP2 are major contributors to cardiac hypertrophy, but may not be sufficient to fully express the phenotype alone. Methods: To elucidate the contribution of Nod1/RIP2 signaling to cardiac hypertrophy, we randomized Nod1 –/– , RIP2 –/– , or wild-type mice to transverse aortic constriction or sham operations. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. Results: Nod1 and RIP2 proteins were upregulated in the heart after transverse aortic constriction, and this was paralleled by increased expression of mitochondrial proteins, including mitochondrial antiviral signaling protein (MAVS). Nod1 –/– and RIP2 –/– mice subjected to transverse aortic constriction exhibited better survival, improved cardiac function, and decreased cardiac hypertrophy. Downstream signal transduction pathways that regulate inflammation and fibrosis, including NF (nuclear factor) κB and MAPK (mitogen-activated protein kinase)-GATA4/p300, were reduced in both Nod1 –/– and RIP2 –/– mice after transverse aortic constriction compared with wild-type mice. Coimmunoprecipitation of extracted cardiac proteins and confocal immunofluorescence microscopy showed that Nod1/RIP2 interaction was robust and that this complex also included MAVS as an essential component. Suppression of MAVS expression attenuated the complex formation, NF κB signaling, and myocyte hypertrophy. Interrogation of mitochondrial function compared in the presence or ablation of MAVS revealed that MAVS serves to suppress mitochondrial energy output and mediate fission/fusion related dynamic changes. The latter is possibly linked to mitophagy during cardiomyocytes stress, which may provide an intriguing link between innate immune activation and mitochondrial energy balance under stress or injury conditions. Conclusions: We have identified that innate immune Nod1/RIP2 signaling is a major contributor to cardiac remodeling after stress. This process is critically joined by and regulated through the mitochondrial danger signal adapter MAVS. This novel complex coordinates remodeling, inflammatory response, and mitochondrial energy metabolism in stressed cardiomyocytes. Thus, Nod1/RIP2/MAVS signaling complex may represent an attractive new therapeutic approach toward heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3