Overexpression of Urokinase by Plaque Macrophages Causes Histological Features of Plaque Rupture and Increases Vascular Matrix Metalloproteinase Activity in Aged Apolipoprotein E–Null Mice

Author:

Hu Jie Hong1,Du Liang1,Chu Talyn1,Otsuka Goro1,Dronadula Nagadhara1,Jaffe Mia1,Gill Sean E.1,Parks William C.1,Dichek David A.1

Affiliation:

1. From the Department of Medicine, University of Washington School of Medicine, Seattle.

Abstract

Background— The mechanisms of atherosclerotic plaque rupture are poorly understood. Urokinase-type plasminogen activator (uPA) is expressed at elevated levels by macrophages in advanced human plaques. Patients with evidence of increased plasminogen activation have an elevated risk of major cardiovascular events. We used atherosclerotic mice to test the hypothesis that increased macrophage uPA expression in advanced plaques would cause histological features similar to those in ruptured human plaques. Methods and Results— Bone marrow from transgenic mice with increased macrophage uPA expression or nontransgenic controls (all apolipoprotein E–null [ Apoe −/− ]) was transplanted into 35-week-old Apoe −/− recipients, and innominate lesions and aortas were examined 8 to 13 weeks later. Donor macrophages accumulated in innominate lesions adjacent to plaque caps and in aortas, increasing uPA expression at both sites. Recipients of uPA-overexpressing macrophages had an increased prevalence of intraplaque hemorrhage (61% versus 13%; P =0.002) as well as increased lesion fibrin staining and fibrous cap disruption ( P =0.06 for both). Transplantation of uPA-overexpressing macrophages increased aortic matrix metalloproteinase activity (40%; P =0.02). This increase was independent of matrix metalloproteinase-9. Conclusions— In advanced plaques of Apoe −/− mice, macrophage uPA overexpression causes intraplaque hemorrhage and fibrous cap disruption, features associated with human plaque rupture. uPA overexpression also increases vascular matrix metalloproteinase activity. These data provide a mechanism that connects macrophage uPA expression, matrix metalloproteinase activity, and plaque rupture features in mice. The data also suggest that elevated plaque plasminogen activator expression and plasminogen activation in humans may be causally linked to plaque rupture and cardiovascular events.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3