Nonsynchronous accumulation of alpha-skeletal actin and beta-myosin heavy chain mRNAs during early stages of pressure-overload--induced cardiac hypertrophy demonstrated by in situ hybridization.

Author:

Schiaffino S1,Samuel J L1,Sassoon D1,Lompré A M1,Garner I1,Marotte F1,Buckingham M1,Rappaport L1,Schwartz K1

Affiliation:

1. INSERM U127, Université Paris VII, Hôpital Lariboisière, Paris, France.

Abstract

The development of cardiac hypertrophy secondary to pressure overload is accompanied by isoformic changes of contractile proteins such as myosin and actin. 35S-Labeled complementary RNA (cRNA) probes and in situ hybridization procedures were used for analysis of the regional distribution of newly formed transcripts from alpha-skeletal actin (alpha-sk-actin) and beta-myosin heavy chain (beta-MHC) genes during the early stages of pressure overload. The study was performed in 25-day-old rats submitted to a thoracic aortic stenosis and killed after surgery at times ranging from 4 hours to 3 days. Neither alpha-sk-actin nor beta-MHC messenger RNA (mRNA) was detected in the hearts of normal and sham-operated animals. However, alpha-sk-actin mRNA accumulated throughout the entire left ventricle as early as 4 hours after aortic stenosis, and by 12 hours was also detected in the left atrium. In contrast, beta-MHC mRNA was hardly detectable before day 1, and by days 2-3 was mainly restricted to the inner part of the left ventricle and around the coronary arteries. The absence of spatial and temporal coordination in the accumulation of alpha-sk-actin and beta-MHC mRNAs indicates that different signals and/or regulatory mechanisms are implicated in the induction of the two genes in response to hemodynamic overload.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3