Luseogliflozin inhibits high glucose-induced TGF-β2 expression in mouse cardiomyocytes by suppressing NHE-1 activity

Author:

Osaka Naoya1,Mori Yusaku2ORCID,Terasaki Michishige1,Hiromura Munenori1,Saito Tomomi1,Yashima Hironori1,Shiraga Yoshie1,Kawakami Raichi1,Ohara Makoto1,Fukui Tomoyasu1,Yamagishi Sho-ichi1

Affiliation:

1. Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan

2. Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Anti-glycation Research Section, Showa University School of Medicine, Shinagawa, Tokyo, Japan

Abstract

Objective Sodium-glucose cotransporter-2 (SGLT2) inhibitors exhibit cardioprotective properties in patients with diabetes. However, SGLT2 is not expressed in the heart, and the underlying molecular mechanisms are not fully understood. We investigated whether the SGLT2 inhibitor luseogliflozin exerts beneficial effects on high glucose-exposed cardiomyocytes via the suppression of sodium-hydrogen exchanger-1 (NHE-1) activity. Methods Mouse cardiomyocytes were incubated under normal or high glucose conditions with vehicle, luseogliflozin, or the NHE-1 inhibitor cariporide. NHE-1 activity and gene expression were evaluated by the SNARF assay and real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis, respectively. Six-week-old male db/db mice were treated with vehicle or luseogliflozin for 6 weeks, and the hearts were collected for histological, RT-PCR, and western blot analyses. Results High glucose increased NHE-1 activity and transforming growth factor (Tgf)-β 2 mRNA levels in cardiomyocytes, both of which were inhibited by luseogliflozin or cariporide, whereas their combination showed no additive suppression of Tgf-β2 mRNA levels. Luseogliflozin attenuated cardiac hypertrophy and fibrosis in db/db mice in association with decreased mRNA and protein levels of TGF-β2. Conclusions Luseogliflozin may suppress cardiac hypertrophy in diabetes by reducing Tgf-β2 expression in cardiomyocytes via the suppression of NHE-1 activity.

Funder

Taisho Pharmaceutical

Ono Pharmaceutical

Boehringer Ingelheim JP

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3