Certain beta-blockers can decrease beta-adrenergic receptor number: I. Acute reduction in receptor number by tertatolol and bopindolol.

Author:

De Blasi A1,Fratelli M1,Marasco O1

Affiliation:

1. Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.

Abstract

We have previously reported that a potent new beta-blocker, tertatolol, when given at therapeutic doses to healthy volunteers, rapidly reduced the number of human mononuclear leukocyte beta-receptors. In the present study, the mechanism of receptor regulation by beta-antagonists incubated with target cells in vitro was investigated. Two different cell types (human mononuclear leukocytes and S49 murine lymphoma cells) were used, and beta-adrenergic receptors were measured using either the hydrophilic ligand 3H-CGP 12177 (specific for surface receptors) or lipophilic 125I-pindolol (which measures total receptors). In a comparison between beta-blockers, tertatolol and bopindolol, but not propranolol and pindolol, were found to rapidly (1 hour at 37 degrees C) reduce the number of beta-adrenergic receptors. This was paralleled by a reduction in isoproterenol-stimulated cyclic AMP accumulation. The reduction in receptors was the same whether surface or total receptors were measured; thus, it was not due to receptor sequestration. This effect was not caused by partial agonist activity (bopindolol is a weak partial agonist); in parallel experiments, tertatolol and bopindolol, but not pindolol (potent partial agonist) and isoproterenol (full agonist), reduced beta-adrenergic receptors. Finally, this effect was not due to irreversible binding: the receptor reduction induced by the irreversible blocker bromo-acetyl-alprenolol-methane (BAAM) was stable for several hours, while the effect of tertatolol and bopindolol was slowly reversed over the same time course. We suggest that tertatolol and bopindolol have two effects on beta-adrenergic receptors: they bind competitively, and then they modify the receptors so that they are no longer available for binding by ligands or catecholamines.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3