Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart.

Author:

Neubauer S1,Hamman B L1,Perry S B1,Bittl J A1,Ingwall J S1

Affiliation:

1. Harvard Medical School NMR Laboratory, Boston, MA 02115.

Abstract

Recovery of postischemic function may be limited by energy synthesis by mitochondria, energy transfer via the creatine kinase reaction, or energy utilization at myofibrils. To identify the limiting step, we defined the relations among oxygen consumption, creatine kinase reaction velocity and cardiac performance in myocardium reperfused following mild, moderate, and severe ischemia. Isolated isovolumic ferret hearts were perfused with Krebs-Henseleit buffer at 37 degrees C. After 30 minutes of control, hearts were made ischemic for 20, 40, or 60 minutes and reperfused for 40 minutes. During preischemia, cardiac performance (estimated as the rate-pressure product), was 14.8 x 10(3) mm Hg/min, oxygen consumption was 16.7 mumol/min/g dry weight, and creatine kinase reaction velocity measured by 31P-nuclear magnetic resonance saturation transfer was 12.7 mM/sec. For hearts reperfused after 20, 40, or 60 minutes of ischemia, rate-pressure product was 11.5, 6.5, and 1.1 x 10(3) mm Hg/min; oxygen consumption was 13.5, 14.2, and 6.9 mumol/min/g dry weight; and creatine kinase reaction velocity was 9.6, 5.0, and 2.0 mM/sec, respectively. Thus, with increasing severity of insult, creatine kinase reaction velocity decreased monotonically with performance (r = 0.99). Changes in creatine kinase reaction velocity were predicted from the creatine kinase rate equation (r = 0.99; predicted vs. measured velocity) and can therefore be explained by changes in substrate concentration. Oxygen consumption did not correlate with performance or creatine kinase velocity, consistent with abnormalities in mitochondrial energy production. In all cases, creatine kinase reaction velocity was an order of magnitude faster than the maximal rate of ATP synthesis estimated by oxygen consumption. We conclude that, in postischemic myocardium, creatine kinase reaction velocity decreases in proportion to performance, but high-energy phosphate transfer does not limit availability of high-energy phosphate for contraction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference33 articles.

1. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart

2. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A31P-NMR magnetization transfer study;Bittl JA;J Biol Chem,1985

3. Ingwall JS Kobayashi K Bittl JA: In vivo enzymology of the creatine kinase reaction in the isolated rat heart: 31 P magnetization transfer in Smirnoff VN Katz A (eds): Proceedings of Sixth Joint USA-USSR Symposium on Myocardial Metabolism. New York Gordon & Breach 1987 pp 30-48

4. Velocity of the creatine kinase reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase

5. Effects of norepinephrine infusion on myocardial high-energy phosphate content and turnover in the living rat.

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3