Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium

Author:

Akki Ashwin12,Su Jason3,Yano Toshiyuki3,Gupta Ashish12,Wang Yibin4,Leppo Michelle K.1,Chacko Vadappuram P.2,Steenbergen Charles3,Weiss Robert G.12

Affiliation:

1. Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;

2. Division of Nuclear Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland;

3. Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland;

4. Division of Molecular Medicine, Department of Anesthesiology, The Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California

Abstract

Reduced myofibrillar ATP availability during prolonged myocardial ischemia may limit post-ischemic mechanical function. Because creatine kinase (CK) is the prime energy reserve reaction of the heart and because it has been difficult to augment ATP synthesis during and after ischemia, we used mice that overexpress the myofibrillar isoform of creatine kinase (CKM) in cardiac-specific, conditional fashion to test the hypothesis that CKM overexpression increases ATP delivery in ischemic-reperfused hearts and improves functional recovery. Isolated, retrograde-perfused hearts from control and CKM mice were subjected to 25 min of global, no-flow ischemia and 40 min of reperfusion while cardiac function [rate pressure product (RPP)] was monitored. A combination of 31P-nuclear magnetic resonance experiments at 11.7T and biochemical assays was used to measure the myocardial rate of ATP synthesis via CK (CK flux) and intracellular pH (pHi). Baseline CK flux was severalfold higher in CKM hearts (8.1 ± 1.0 vs. 32.9 ± 3.8, mM/s, control vs. CKM; P < 0.001) with no differences in phosphocreatine concentration [PCr] and RPP. End-ischemic pHi was higher in CKM hearts than in control hearts (6.04 ± 0.12 vs. 6.37 ± 0.04, control vs. CKM; P < 0.05) with no differences in [PCr] and [ATP] between the two groups. Post-ischemic PCr (66.2 ± 1.3 vs. 99.1 ± 8.0, %preischemic levels; P < 0.01), CK flux (3.2 ± 0.4 vs. 14.0 ± 1.2 mM/s; P < 0.001) and functional recovery (13.7 ± 3.4 vs. 64.9 ± 13.2%preischemic RPP; P < 0.01) were significantly higher and lactate dehydrogenase release was lower in CKM than in control hearts. Thus augmenting cardiac CKM expression attenuates ischemic acidosis, reduces injury, and improves not only high-energy phosphate content and the rate of CK ATP synthesis in postischemic myocardium but also recovery of contractile function.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3