Enhanced chemiluminescence as a measure of oxygen-derived free radical generation during ischemia and reperfusion.

Author:

Henry T D1,Archer S L1,Nelson D1,Weir E K1,From A H1

Affiliation:

1. Department of Medicine, Veterans Affairs Medical Center, Minneapolis, MN.

Abstract

It has been suggested that oxygen-derived free radicals may contribute to the myocardial injury associated with ischemia and reperfusion. As the presence of enhanced free radical generation is a prerequisite for such damage, several techniques have been used to provide evidence of increased oxygen free radical production during reperfusion; however, all such techniques have substantial limitations. In this study, we used enhanced chemiluminescence to evaluate oxygen free radical generation during ischemia and reperfusion in the isolated Langendorff-perfused rat heart. The chemiluminescent technique, which has high sensitivity and can monitor radical generation continuously, avoids some of the limitations of earlier methods. Chemiluminescence (expressed as counts per second) decreased from 219 +/- 11 at baseline to 142 +/- 9 during ischemia and markedly increased to a peak of 476 +/- 36 during the first 3-5 minutes of reperfusion. This was followed by a slow decline over 11-16 minutes to a steady-state level of 253 +/- 14 (each sequential change in chemiluminescence was highly significant; p less than 0.001). Superoxide dismutase (2,000 units/min) significantly decreased peak reperfusion chemiluminescence to 316 +/- 17 (p less than 0.01). Hearts subjected to a second period of ischemia and reperfusion had a higher peak chemiluminescence (626 +/- 62), which also was significantly attenuated by 1,000 units/min superoxide dismutase (398 +/- 16; p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3