Inhibition of Vascular Smooth Muscle Cell Migration by Cytochrome P450 Epoxygenase-Derived Eicosanoids

Author:

Sun Jianxin1,Sui XinXin1,Bradbury J. Alyce1,Zeldin Darryl C.1,Conte Michael S.1,Liao James K.1

Affiliation:

1. From the Vascular Medicine Research (J.S., J.K.L.) and Surgical Unit (X.S., M.S.C.), Brigham and Women’s Hospital and Harvard Medical School, Boston, Mass; and the Division of Intramural Research (A.B., D.C.Z.), NIH/NIEHS, Research Triangle Park, NC.

Abstract

Vascular smooth muscle cell (SMC) migration and proliferation contribute to neointimal hyperplasia and restenosis after vascular injury. The epoxyeicosatrienoic acids (EETs), which are products of cytochrome P450 (CYP) epoxygenases, possess vasodilatory, antiinflammatory, and fibrinolytic properties. To determine whether these compounds also possess antimigratory and antiproliferative properties, we stimulated rat aortic SMCs with either 20% serum or platelet-derived growth factor (PDGF-BB, 20 ng/mL). In a concentration-dependent manner, treatment with EETs, particularly 11,12-EET, inhibited SMC migration through a modified transwell filter by 53% to 60%. EETs, however, have no inhibitory effects on PDGF-stimulated SMC proliferation. Adenoviral-mediated overexpression of the CYP isoform, CYP2J2, in SMCs also inhibited serum- and PDGF-induced SMC migration by 32% and 26%, respectively; both effects of which were reversed by the CYP inhibitors SKF525A or clotrimazole, but not by the K Ca channel blocker, charybdotoxin, or the cyclooxygenase inhibitor, diclofenac. The effect of EETs correlated with increases in intracellular cAMP levels. Indeed, forskolin and 8-bromo-cAMP exert similar inhibitory effects on SMC migration as 11,12-EET and the effects of 11,12-EET were blocked by cAMP and protein kinase A (PKA) inhibitors. These findings indicate that EETs possess antimigratory effects on SMCs through the cAMP-PKA pathway and suggest that CYP epoxygenase-derived eicosanoids may play important roles in vascular disease and remodeling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3